19.02.2013 Views

Blaga P. Lectures on the differential geometry of - tiera.ru

Blaga P. Lectures on the differential geometry of - tiera.ru

Blaga P. Lectures on the differential geometry of - tiera.ru

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

1.13. The c<strong>on</strong>tact between a space curve and a sphere. The osculating sphere 67<br />

<strong>the</strong> curve with respect to <strong>the</strong> Frenet frame at M0. Thus, in our case, we have<br />

or<br />

F(x(s), y(s), z(s)) =<br />

�<br />

1<br />

+<br />

− 2b<br />

�<br />

s − 1<br />

6 k(0)χ(0)s3 + o(s 3 )<br />

� 2<br />

6 k2 (0)s 3 + o(s 3 �2 )<br />

− 2a<br />

�<br />

s − 1<br />

�<br />

1<br />

2 k(0)s2 + 1<br />

6 k′ (0)s 3 + o(s 3 �<br />

)<br />

�<br />

1<br />

+<br />

6 k2 (0)s 3 + o(s 3 )<br />

− 2c<br />

2 k(0)s2 + 1<br />

�<br />

−<br />

�<br />

1<br />

6 k(0)χ(0)s3 + o(s 3 �<br />

)<br />

6 k′ (0)s 3 + o(s 3 �2 )<br />

= 0.<br />

+<br />

(1.13.2)<br />

−2as + (1 − bk(0))s 2 + 1<br />

3 (ak2 (0) − bk ′ (0) − ck(0)χ(0))s 3 + o(s 3 ). (1.13.3)<br />

Now, <strong>the</strong> discussi<strong>on</strong> that follows is, also, similar to that from <strong>the</strong> case <strong>of</strong> <strong>the</strong> c<strong>on</strong>tact<br />

between a curve and a plane. Still, here we have more cases to take into c<strong>on</strong>siderati<strong>on</strong>.<br />

a) If a � 0, <strong>the</strong>n s = 0 is a simple soluti<strong>on</strong> <strong>of</strong> <strong>the</strong> intersecti<strong>on</strong> equati<strong>on</strong>. Thus, in this<br />

case <strong>the</strong> sphere and <strong>the</strong> curve have a c<strong>on</strong>tact <strong>of</strong> order zero (intersecti<strong>on</strong> c<strong>on</strong>tact).<br />

b) The sphere and <strong>the</strong> curve have a first order c<strong>on</strong>tact (tangency c<strong>on</strong>tact) if and <strong>on</strong>ly if<br />

<strong>the</strong> intersecti<strong>on</strong> equati<strong>on</strong> has a double zero at <strong>the</strong> origin. This happens, obviously, iff<br />

a = 0. This means that <strong>the</strong> first coordinate <strong>of</strong> <strong>the</strong> center <strong>of</strong> <strong>the</strong> sphere is zero, i.e. this<br />

center lies in <strong>the</strong> normal plane <strong>of</strong> <strong>the</strong> curve at M0. It is easy to see that in this case<br />

<strong>the</strong> tangent line at M0 <strong>of</strong> <strong>the</strong> curve lies in <strong>the</strong> tangent plane <strong>of</strong> <strong>the</strong> sphere at <strong>the</strong> same<br />

point, which justifies <strong>on</strong>ce more <strong>the</strong> denominati<strong>on</strong> <strong>of</strong> tangency c<strong>on</strong>tact.<br />

c) For an osculati<strong>on</strong> (sec<strong>on</strong>d order) c<strong>on</strong>tact, <strong>the</strong> coefficient <strong>of</strong> s 2 in <strong>the</strong> intersecti<strong>on</strong> equati<strong>on</strong><br />

also has to vanish and we get<br />

b = 1<br />

= R(0), (1.13.4)<br />

k(0)<br />

where R(0) is <strong>the</strong> curvature radius <strong>of</strong> <strong>the</strong> curve at <strong>the</strong> point M0. Thus, in this case, <strong>the</strong><br />

center <strong>of</strong> <strong>the</strong> sphere lies <strong>on</strong> <strong>the</strong> intersecti<strong>on</strong> line <strong>of</strong> <strong>the</strong> planes x = 0 (<strong>the</strong> normal plane)<br />

and y = R(0). This line, which, as <strong>on</strong>e can easily see, is parallel to <strong>the</strong> binormal <strong>of</strong><br />

<strong>the</strong> curve at M0, is called curvature axis or polar axis <strong>of</strong> <strong>the</strong> curve. It intersects <strong>the</strong><br />

osculating plane at M0 <strong>of</strong> <strong>the</strong> curve at <strong>the</strong> center <strong>of</strong> curvature at M0 <strong>of</strong> <strong>the</strong> curve.<br />

Thus, any sphere with <strong>the</strong> center <strong>on</strong> <strong>the</strong> curvature axis <strong>of</strong> <strong>the</strong> curve has an osculati<strong>on</strong><br />

c<strong>on</strong>tact with this <strong>on</strong>e.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!