19.02.2013 Views

Blaga P. Lectures on the differential geometry of - tiera.ru

Blaga P. Lectures on the differential geometry of - tiera.ru

Blaga P. Lectures on the differential geometry of - tiera.ru

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

3.2. Examples for <strong>the</strong> integrati<strong>on</strong> <strong>of</strong> <strong>the</strong> natural equati<strong>on</strong> <strong>of</strong> a plane curve 99<br />

where a and b are n<strong>on</strong>vanishing c<strong>on</strong>stants. A possibility would be to express R in terms<br />

<strong>of</strong> s and <strong>the</strong>n integrate. However, this would lead to complicati<strong>on</strong>s, due to <strong>the</strong> <strong>the</strong> presence<br />

<strong>of</strong> <strong>the</strong> square root and <strong>the</strong> sign ambiguity. We prefer, instead, to introduce a new<br />

parameter t, through <strong>the</strong> relati<strong>on</strong>s<br />

s = a sin t, R = b cos t.<br />

It is, <strong>the</strong>n, very easy to find <strong>the</strong> c<strong>on</strong>tingency angle in terms <strong>of</strong> this new parameter. Indeed,<br />

we have<br />

�<br />

α =<br />

�<br />

1<br />

ds =<br />

R<br />

1<br />

at<br />

a cos t dt =<br />

b cos t b .<br />

We can proceed now with <strong>the</strong> determinati<strong>on</strong> <strong>of</strong> <strong>the</strong> coordinates x and y, in terms <strong>of</strong> <strong>the</strong><br />

parameter t:<br />

�<br />

x =<br />

�<br />

cos α ds = cos at<br />

�<br />

a b (a − b)t<br />

· a · cos t dt = sin +<br />

b 2 a − b b<br />

b<br />

�<br />

(a + b)t<br />

sin ,<br />

a + b b<br />

�<br />

y =<br />

�<br />

sin α ds = sin at<br />

�<br />

b (a − b)t<br />

· a · cos t dt = −a cos +<br />

b 2 a − b b<br />

b<br />

�<br />

(a + b)t<br />

cos .<br />

a + b b<br />

The clothoid. This is <strong>the</strong> curve whose natural equati<strong>on</strong> is<br />

R = a2<br />

. (3.2.5)<br />

s<br />

Thus, for <strong>the</strong> clothoid (also known as <strong>the</strong> Cornu’s spiral), <strong>the</strong> radius <strong>of</strong> curvature is<br />

proporti<strong>on</strong>al to <strong>the</strong> inverse <strong>of</strong> <strong>the</strong> arc length. From this point <strong>of</strong> view, it is, to some<br />

extent, similar to <strong>the</strong> logarithmic spiral, where <strong>the</strong> radius <strong>of</strong> curvature was proporti<strong>on</strong>al<br />

to <strong>the</strong> arc length, ra<strong>the</strong>r than to its inverse. We include this curve here to show that even<br />

in <strong>the</strong> case <strong>of</strong> a very simple expressi<strong>on</strong> <strong>of</strong> <strong>the</strong> curvature in terms <strong>of</strong> <strong>the</strong> arc length (in this<br />

case <strong>the</strong> curvature is proporti<strong>on</strong>al to <strong>the</strong> arc length, i.e. it is a linear functi<strong>on</strong>), we might<br />

not be able to find a parametric representati<strong>on</strong> in terms <strong>of</strong> elementary functi<strong>on</strong>s.<br />

The c<strong>on</strong>tingency angle is easily found:<br />

<strong>the</strong>refore <strong>the</strong> coordinates are<br />

�<br />

x =<br />

α = s2<br />

, (3.2.6)<br />

2a<br />

cos s2<br />

�<br />

ds, x =<br />

2a<br />

sin s2<br />

ds. (3.2.7)<br />

2a

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!