19.02.2013 Views

Blaga P. Lectures on the differential geometry of - tiera.ru

Blaga P. Lectures on the differential geometry of - tiera.ru

Blaga P. Lectures on the differential geometry of - tiera.ru

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

174 Chapter 4. General <strong>the</strong>ory <strong>of</strong> surfaces<br />

Combining everything we obtained, we get <strong>the</strong> following expressi<strong>on</strong> (due, as we said<br />

before, to Baltzer) for <strong>the</strong> total curvature<br />

Kt =<br />

−<br />

1<br />

(EG − F2 ) 2<br />

�<br />

�<br />

�<br />

�<br />

�<br />

�<br />

�<br />

�<br />

�<br />

�<br />

�<br />

2G′ v F G<br />

1<br />

(EG − F2 ) 2<br />

�<br />

� 1<br />

�<br />

�<br />

0 2<br />

�<br />

�<br />

�<br />

�<br />

�<br />

�<br />

�<br />

E′ 1<br />

v 2G′ u<br />

1<br />

2 E′ v E F<br />

1<br />

2G′ �<br />

�<br />

�<br />

�<br />

�<br />

�<br />

�<br />

� ,<br />

�<br />

�<br />

u F G �<br />

− 1<br />

2G′′ u2 + F ′′<br />

uv − 1<br />

2 E′′<br />

v2 1<br />

2 E′ u F ′ u − 1<br />

2 E′ v<br />

F ′ v − 1<br />

2G′ u<br />

1<br />

E F<br />

�<br />

�<br />

�<br />

�<br />

�<br />

�<br />

�<br />

� −<br />

�<br />

�<br />

�<br />

(4.18.7)<br />

which c<strong>on</strong>cludes <strong>the</strong> pro<strong>of</strong>, as we got an expressi<strong>on</strong> <strong>of</strong> Kt which, indeed, depends <strong>on</strong>ly <strong>on</strong><br />

<strong>the</strong> coefficients <strong>of</strong> <strong>the</strong> first fundamental form and <strong>the</strong>ir derivatives up to sec<strong>on</strong>d order. �<br />

Exercise 4.18.1 (Frobenius). Show that <strong>the</strong> total curvature <strong>of</strong> a surface can be written,<br />

also, in <strong>the</strong> following form, easier to remember:<br />

1<br />

Kt = −<br />

4(EG − F2 ) 2<br />

�<br />

�<br />

�<br />

�E<br />

E<br />

�<br />

�<br />

�<br />

�<br />

�<br />

′ u E ′ v<br />

F F ′ u F ′ v<br />

G G ′ u G ′ �<br />

�<br />

�<br />

�<br />

�<br />

�<br />

� +<br />

�<br />

v�<br />

1<br />

+<br />

2 √ EG − F2 � �<br />

∂ F ′<br />

v − G<br />

∂u<br />

′ �<br />

u<br />

√ +<br />

EG − F2 ∂<br />

�<br />

F ′<br />

u − E<br />

∂v<br />

′ ��<br />

v<br />

√ .<br />

EG − F2 (4.18.8)<br />

In <strong>the</strong> particular case <strong>of</strong> an orthog<strong>on</strong>al coordinate system (F ≡ 0), we get <strong>the</strong> following<br />

nice “divergence” expressi<strong>on</strong> for <strong>the</strong> total curvature:<br />

Kt = − 1<br />

2 √ � �<br />

∂ G ′ �<br />

u<br />

√ +<br />

EG ∂u EG<br />

∂<br />

�<br />

E ′ ��<br />

v<br />

√ , (4.18.9)<br />

∂v EG<br />

which will be used later for some integral formulae.<br />

Exercise 4.18.2 (Liouville). Prove <strong>the</strong> following (slightly asymmetric) formula for <strong>the</strong><br />

total curvature <strong>of</strong> a surface:<br />

1<br />

Kt = −<br />

2 √ EG − F2 ⎧ ⎛<br />

⎪⎨ ∂ G<br />

⎪⎩<br />

⎜⎝<br />

∂u<br />

′ u + F<br />

GG′ v − 2F ′ ⎞ ⎛<br />

v ∂ E<br />

√ ⎟⎠ + ⎜⎝<br />

EG − F2 ∂v<br />

′ v − F<br />

GG′ ⎞⎫<br />

u ⎪⎬<br />

√ ⎟⎠<br />

EG − F2 ⎪⎭<br />

. (4.18.10)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!