19.02.2013 Views

Blaga P. Lectures on the differential geometry of - tiera.ru

Blaga P. Lectures on the differential geometry of - tiera.ru

Blaga P. Lectures on the differential geometry of - tiera.ru

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

1.11. The local behaviour <strong>of</strong> a parameterized curve around a biregular point 63<br />

We expand r in a Taylor series around <strong>the</strong> origin. Up to <strong>the</strong> third order, <strong>the</strong> Taylor<br />

expansi<strong>on</strong> is<br />

r(s) = r(0) + sr ′ (0) + 1<br />

2 s2r ′′ (0) + 1<br />

6 s3r ′′′ (0) + o(s 3 ). (1.11.1)<br />

We want to express <strong>the</strong> derivatives <strong>of</strong> r as functi<strong>on</strong>s <strong>of</strong> <strong>the</strong> Frenet vectors τ0, ν0, β0. We<br />

have, obviously, since r is naturally parameterized,<br />

r ′ (0) = τ0. (1.11.2)<br />

On <strong>the</strong> o<strong>the</strong>r hand, from <strong>the</strong> definiti<strong>on</strong> <strong>of</strong> <strong>the</strong> curvature vector, we have<br />

Moreover, if we differentiate <strong>the</strong> relati<strong>on</strong><br />

we get<br />

r ′′ (0) = k(0) = k(0) · ν0. (1.11.3)<br />

r ′′ (s) = k(s) = k(s) · ν (1.11.4)<br />

r ′′′ (s) = k ′ (s)ν + k(s)ν ′ = k ′ (s)ν + k(s)(−k(s)τ + χ(s)β) =<br />

= −k 2 (s)τ + k ′ (s)ν + k(s)χ(s)β,<br />

where we have made use <strong>of</strong> <strong>the</strong> sec<strong>on</strong>d Frenet equati<strong>on</strong>.<br />

Substituting s = 0 in (1.11.5), we get<br />

Thus, <strong>the</strong> relati<strong>on</strong> (1.11.1) becomes<br />

or<br />

(1.11.5)<br />

r ′′′ (0) = −k 2 (0)τ0 + k ′ (0)ν0 + k(0)χ(0)β 0. (1.11.6)<br />

r(s) − r(0) = sτ0 + 1<br />

2 s2k(0)ν0 + 1<br />

6 s3 � −k 2 (0)τ0 + k ′ �<br />

3<br />

(0)ν0 + k(0)χ(0)β0 + o(s ) (1.11.7)<br />

r(s) − r(0) =<br />

+<br />

�<br />

s − 1<br />

6 k2 (0)s 3 + o(s 3 �<br />

)<br />

� 1<br />

6 k(0)χ(0)s3 + o(s 3 )<br />

�<br />

1<br />

τ0 +<br />

2 k(0)s2 + 1<br />

6 k′ (0)s 3 + o(s 3 �<br />

) ν0+<br />

�<br />

β0. (1.11.8)<br />

We c<strong>on</strong>sider now a coordinate frame with <strong>the</strong> origin at M0 and having as axes <strong>the</strong> Frenet<br />

axes. The positi<strong>on</strong> vector <strong>of</strong> a point <strong>of</strong> <strong>the</strong> curve with respect to this frame is exactly <strong>the</strong>

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!