18.05.2013 Views

PROCEEDINGS OF THE 7 INTERNATIONAL ... - Fizika

PROCEEDINGS OF THE 7 INTERNATIONAL ... - Fizika

PROCEEDINGS OF THE 7 INTERNATIONAL ... - Fizika

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

A. Kulbickas / Medical Physics in the Baltic States 7 (2009) 30 - 33<br />

possesses spin, which is the quantum form of<br />

magnetism.<br />

Fig. 7. Nitrogen - vacancy defect in the diamond structure.<br />

In essence, spins are analogous to the tiny bar magnets<br />

and can code and store information by pointing in<br />

different directions. In practice, its spin can be<br />

manipulated using optical or magnetic techniques and<br />

the defect can be made to emit a single photon of light<br />

which has the characteristic of being “spin-up” or “spindown”.<br />

This in itself is not unique as many other<br />

materials have similar defects that can be used in the<br />

same way. The real advantage is that the properties of<br />

diamond mean that it can work at room temperature<br />

while other technologies being explored require very<br />

low temperatures. Surprising the (N-V) centre possesses<br />

spin at room temperature, which can be manipulated by<br />

illumination and the defect can be made to emit a single<br />

photon of light which has the characteristic of being<br />

‘spin-up’ or ‘spin-down’ [14]. The Raman spectra at<br />

300 K and 77K are plotted in (Fig.8a,b,c,d). In the<br />

(Fig.8b) the diamond spectra are weak at 637 nm and<br />

displaying small amount of (N-V) defects. After<br />

irradiation the line at 637 nm is stronger as result<br />

formation more (N-V) defects (Fig.8a). The (N-V)<br />

defects have formed strong optical transitions with zerophonon<br />

lines (ZPL) at 575 nm and 637 nm respectively<br />

(Fig.8 a,b,c,d). The ZPL peak at 575nm .is due the<br />

electronic transition of the neutral defect center (N-V) 0 ,<br />

and the 637 nm ZPL peak corresponds to the 3 A→ 3 E<br />

transition of the negatively charged defect center (N-V) -<br />

[15–18]. Negatively charged nitrogen-vacancy (N-V) -<br />

centers in diamond have attracted much attention<br />

recently due to their unique properties, such as very<br />

long spin lifetimes at room temperature and their<br />

suitability for single photon sources [19].<br />

Raman intensity<br />

6,5x10 4<br />

6,0x10 4<br />

5,5x10 4<br />

5,0x10 4<br />

4,5x10 4<br />

4,0x10 4<br />

3,5x10 4<br />

3,0x10 4<br />

2,5x10 4<br />

2,0x10 4<br />

1,5x10 4<br />

1,0x10 4<br />

5,0x10 3<br />

0,0<br />

4,0x10 4<br />

3,5x10 4<br />

3,0x10 4<br />

2,5x10 4<br />

2,0x10 4<br />

1,5x10 4<br />

1,0x10 4<br />

5,0x10 3<br />

sample 15 514 nm con 10s nm-scale low temp<br />

a)<br />

b)<br />

sample 15 514 nm con 10s nm-scale room temp<br />

552<br />

0,0<br />

500 550<br />

Wavelength, nm<br />

600 650<br />

588<br />

588<br />

T=77K<br />

604<br />

612<br />

NV -<br />

637<br />

NV<br />

637<br />

-<br />

T=300K<br />

32<br />

Raman intensity<br />

1,4x10 5<br />

1,2x10 5<br />

1,0x10 5<br />

8,0x10 4<br />

6,0x10 4<br />

4,0x10 4<br />

2,0x10 4<br />

0,0<br />

5x10 4<br />

4x10 4<br />

3x10 4<br />

2x10 4<br />

1x10 4<br />

c)<br />

d)<br />

527<br />

535<br />

552<br />

542 557<br />

sample 25 514 nm con 10s nm-scale low temp<br />

T=77K<br />

NV 0<br />

575<br />

552<br />

sample 25 514 nm con 10s nm-scale room temp<br />

T=300K<br />

0<br />

500 550<br />

Wavelength, nm<br />

600 650<br />

Fig. 8. The intensity of Raman spectra of different (a, b) and<br />

(c, d) diamonds at the 77 K and 300 K temperatures<br />

3. Conclusion<br />

The nitrogen defected diamonds possesses several<br />

unique properties: good fluorescence stability and spin<br />

manipulation at room temperature of the (N-V) defects.<br />

It is shown the possibility to use the (N-V) defects of<br />

nanodiamonds as cell biomarkers.<br />

Defected. nanodiamonds with (N-V) defects located<br />

close to the cell in tens nanometers distance to get<br />

information from neighbouring cells.<br />

Acknowledgements Support COST MP0803,<br />

COST P-19 and COST TD 08002 is gratefully<br />

acknowledged. Author thanks prof. R. Vaišnoras for<br />

helpful discussions.<br />

4. References<br />

1. Chi-Cheng Fu, et all, Characterization and<br />

application of single fluorescent nanodiamonds as<br />

cellular biomarkers, Proc Natl Acad Sci USA 104,<br />

2007. p.727-732.<br />

2. (a) J. Sabataityte, I. Simkiene, G.-J. Babonas, A.<br />

Reza, A. Suchodolskis, M. Baran, R. Szymczak, R.<br />

Vaisnoras, L. Rasteniene, V. Golubev, et all,<br />

Modification of photonic properties in porphyrininfiltrated<br />

opal crystals, Photonics and<br />

Nanostructures - Fundamentals and Applications, 5,<br />

2007. p. 125-128. (b) J. Sabataityte, I. Simkiene,<br />

G.-J. Babonas, A. Reza, M. Baran, R. Szymczak, R.<br />

Vaisnoras, L. Rasteniene, V. Golubev and D.<br />

Kurdyukov, Physical studies of porphyrininfiltrated<br />

opal crystals, Materials Science and<br />

Engineering: C, 27, 2007. p. 985-989. (c)<br />

I.Simkiene, J. Sabataityte, A. Reza, G.J. Babonas,<br />

V. Golubev, D. Kurdyukov, Hybrid system of iron<br />

porphyrin on aminosilanized c-Si, Photonics and<br />

Nanostructures- Fundamentals and Applications 5,

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!