02.07.2013 Views

View/Open - Università degli Studi di Milano-Bicocca

View/Open - Università degli Studi di Milano-Bicocca

View/Open - Università degli Studi di Milano-Bicocca

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Anbalagan et. al., PLoS Genet. 2011 March; 7(3): e1002024<br />

42. Weinert TA, Hartwell LH (1993) Cell cycle arrest of cdc mutants and specificity<br />

of the RAD9 checkpoint. Genetics 134: 63–80.<br />

43. Zubko MK, Guillard S, Lydall D (2004) Exo1 and Rad24 <strong>di</strong>fferentially regulate<br />

generation of ssDNA at telomeres of Saccharomyces cerevisiae cdc13-<br />

1 mutants. Genetics 168: 103–115.<br />

44. Teng SC, Chang J, McCowan B, Zakian VA (2000) Telomerase-independent<br />

lengthening of yeast telomeres occurs by an abrupt Rad50p-dependent, Rif-<br />

inhibited recombinational process. Mol Cell 6: 947–952.<br />

45. Chan SW, Chang J, Prescott J, Blackburn EH (2001) Altering telomere<br />

structure allows telomerase to act in yeast lacking ATM kinases. Curr Biol 11:<br />

1240–1250.<br />

46. Goudsouzian LK, Tuzon CT, Zakian VA (2006) S. cerevisiae Tel1p and Mre11p<br />

are required for normal levels of Est1p and Est2p telomere association. Mol<br />

Cell 24: 603–610.<br />

47. Maringele L, Lydall D (2002) EXO1-dependent single-stranded DNA at<br />

telomeres activates subsets of DNA damage and spindle checkpoint pathways<br />

in bud<strong>di</strong>ng yeast yku70Δ mutants. Genes Dev 16: 1919–1933.<br />

48. Gravel S, Larrivée M, Labrecque P, Wellinger RJ (1998) Yeast Ku as a<br />

regulator of chromosomal DNA end structure. Science 280: 741–744.<br />

49. Polotnianka RM, Li J, Lustig AJ (1998) The yeast Ku hetero<strong>di</strong>mer is essential<br />

for protection of the telomere against nucleolytic and recombinational<br />

activities. Curr Biol 8: 831–834.<br />

50. Bertuch AA, Lundblad V (2004) EXO1 contributes to telomere maintenance in<br />

both telomerase-proficient and telomerase-deficient Saccharomyces<br />

cerevisiae. Genetics 166: 1651–1659.<br />

51. Barnes G, Rio D (1997) DNA double-strand-break sensitivity, DNA replication,<br />

and cell cycle arrest phenotypes of Ku-deficient Saccharomyces cerevisiae.<br />

Proc Natl Acad Sci USA 94: 867–872.<br />

52. Nugent CI, Bosco G, Ross LO, Evans SK, Salinger AP, et al. (1998) Telomere<br />

maintenance is dependent on activities required for end repair of double-<br />

strand breaks. Curr Biol 8: 657–660.<br />

53. Feldmann H, Winnacker EL (1993) A putative homologue of the human<br />

autoantigen Ku fromSaccharomyces cerevisiae. J Biol Chem 268: 12895–<br />

12900.<br />

54. Gravel S, Wellinger RJ (2002) Maintenance of double-stranded telomeric<br />

repeats as the critical determinant for cell viability in yeast cells lacking Ku.<br />

Mol Cell Biol 22: 2182–2193.<br />

55. Lundblad V, Szostak JW (1989) A mutant with a defect in telomere elongation<br />

leads to senescence in yeast. Cell 57: 633–643.<br />

90

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!