07.01.2014 Views

PHYS08200604018 Shamik Banerjee - Homi Bhabha National ...

PHYS08200604018 Shamik Banerjee - Homi Bhabha National ...

PHYS08200604018 Shamik Banerjee - Homi Bhabha National ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

78 CHAPTER 4. GENERALITIES OF QUARTER BPS DYON PARTITION FUNCTION<br />

The behaviour of ̂Φ near ˇv s ′ = 0 can be found by the usual procedure and result is<br />

{<br />

̂Φ(ˇρ, ˇσ, ˇv) −1 = − 1 ( ) ˇρ<br />

′ −24 ( ) }<br />

η s ˇρ<br />

′ −24<br />

+ η s + 2<br />

4π2ˇv ′2<br />

s 4<br />

4<br />

{ ( ) ˇσ<br />

′ −24 ( )<br />

× η s ˇσ<br />

′ −24 ( )<br />

+ η s + 1 ˇσ<br />

′ −24 ( ) }<br />

+ η s + 2 ˇσ<br />

′ −24<br />

+ η s + 3<br />

4<br />

4<br />

4<br />

4<br />

{<br />

− 1 ( ) ˇρ<br />

′ −24 ( ) }<br />

η s ˇρ<br />

′ −24<br />

+ η s + 2<br />

)<br />

η(ˇσ<br />

π2ˇv ′ ′2<br />

s 4<br />

4<br />

s) −24 ′0<br />

+ O<br />

(ˇv s (4.6.28)<br />

Note that the first set of terms represent correctly the factorization behaviour given in (4.5.3.21),<br />

but the second set of terms are extra. Thus the wall crossing formula gets modified for the<br />

decay into non-primitive states. Using (4.6.28) we can compute the jump in the index across<br />

the wall<br />

∆d(Q, P ) = 1 ∫ {<br />

iM ′ (−1)Q·P +1 Q ′ · P ′ 1 +1<br />

( ) ˇρ<br />

dˇρ ′ ′ −24 ( ) }<br />

16 iM 1 ′ −1<br />

s η s ˇρ<br />

′ −24<br />

+ η s + 2<br />

e −iπ ˇρ′ sP ′2 /4<br />

4<br />

4<br />

∫ {<br />

iM ′<br />

2 +1/2<br />

( ) ˇσ<br />

dˇσ ′ ′ −24 ( )<br />

iM 2 ′ −1/2<br />

s η s ˇσ<br />

′ −24<br />

+ η s + 1<br />

4<br />

4<br />

( ) ˇσ<br />

′ −24 ( ) }<br />

+η s + 2 ˇσ<br />

′ −24<br />

+ η s + 3<br />

e −iπˇσ′ sQ ′2 /4<br />

Defining<br />

4<br />

+ 1 ∫ {<br />

iM ′ (−1)Q·P +1 Q ′ · P ′ 1 +1<br />

dˇρ ′ s η<br />

4<br />

×<br />

∫ iM ′<br />

2 +1/2<br />

we can express (4.6.29) as<br />

iM ′ 1 −1<br />

4<br />

( ) ˇρ<br />

′ −24<br />

s<br />

+ η<br />

4<br />

( ) }<br />

ˇρ<br />

′ −24<br />

s + 2<br />

4<br />

e −iπ ˇρ′ sP ′2 /4<br />

iM ′ 2 −1/2 dˇσ ′ s η(ˇσ ′ s) −24 e −iπˇσ′ sQ ′2 /4 . (4.6.29)<br />

∆d(Q, P ) = (−1) Q 1·P 2 −Q 2·P 1 +1 (Q 1 · P 2 − Q 2 · P 1 )<br />

(Q 1 , P 1 ) = (Q − P, 0), (Q 2 , P 2 ) = (P, P ) , (4.6.30)<br />

{<br />

( 1<br />

d h (Q 1 , P 1 ) + d h<br />

2 Q 1, 1 )}<br />

2 P 1 d h (Q 2 , P 2 ) .<br />

(4.6.31)<br />

The second term is extra compared to (4.3.7); it represents the effect of non-primitivity of the<br />

final state dyons.<br />

Finally let us turn to the analysis of the black hole entropy. For this we need to identify<br />

the zeroes of ̂Φ at ˇρˇσ − ˇv 2 + ˇv = 0 and show that ̂Φ has the behaviour given in (4.5.3.25)<br />

near this pole. This is easily done using (4.6.1) and the locations of the zeroes of Φ 10 given in

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!