07.01.2014 Views

PHYS08200604018 Shamik Banerjee - Homi Bhabha National ...

PHYS08200604018 Shamik Banerjee - Homi Bhabha National ...

PHYS08200604018 Shamik Banerjee - Homi Bhabha National ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

4.3. CONSTRAINTS FROM WALL CROSSING 47<br />

here<br />

(Q 1 , P 1 ) = (a 0 d 0 Q−a 0 b 0 P, c 0 d 0 Q−c 0 b 0 P ), (Q 2 , P 2 ) = (−b 0 c 0 Q+a 0 b 0 P, −c 0 d 0 Q+a 0 d 0 P ) ,<br />

(4.3.12)<br />

we have<br />

Q 1 · P 2 − Q 2 · P 1 = −Q 2 c 0 d 0 − P 2 a 0 b 0 + Q · P (a 0 d 0 + b 0 c 0 ) . (4.3.13)<br />

Let us now make a change of variables<br />

ˇρ ′ = d 2 0 ˇρ + b 2 0ˇσ + 2b 0 d 0ˇv, ˇσ ′ = c 2 0 ˇρ + a 2 0ˇσ + 2a 0 c 0ˇv, ˇv ′ = c 0 d 0 ˇρ + a 0 b 0ˇσ + (a 0 d 0 + b 0 c 0 )ˇv ,<br />

(4.3.14)<br />

and define<br />

Q ′ = d 0 Q − b 0 P, P ′ = −c 0 Q + a 0 P . (4.3.15)<br />

Under this change of variables<br />

dˇρ ∧ dˇσ ∧ dˇv = dˇρ ′ ∧ dˇσ ′ ∧ dˇv ′ , (4.3.16)<br />

Q 1 · P 2 − Q 2 · P 1 = Q ′ · P ′ , (4.3.17)<br />

(Q 1 , P 1 ) = (a 0 Q ′ , c 0 Q ′ ), (Q 2 , P 2 ) = (b 0 P ′ , d 0 P ′ ) , (4.3.18)<br />

and<br />

1<br />

2 ˇρP 2 + 1 2 ˇσQ2 + ˇvQ · P = 1 2 ˇρ′ P ′2 + 1 2 ˇσ′ Q ′2 + ˇv ′ Q ′ · P ′ . (4.3.19)<br />

Thus the jump in the index given in (4.3.7) can be expressed as<br />

(−1) Q′·P ′ +1 Q ′ · P ′ d h (a 0 Q ′ , c 0 Q ′ )d h (b 0 P ′ , d 0 P ′ ) . (4.3.20)<br />

Furthermore in these variables the pole at (4.3.2) is at ˇv ′ = 0. Thus we can identify (4.3.20)<br />

with the residue of the integrand from ˇv ′ = 0. Using (4.3.16), (4.3.19) the latter may be<br />

expressed as<br />

∫<br />

(−1) Q·P +1 dˇρ ′ dˇσ ′ dˇv ′ e iπ(ˇρ′ P ′2 +ˇσ ′ Q ′2 +2ˇv ′ Q ′·P ′ ) 1<br />

̂Φ(ˇρ, ˇσ, ˇv) , (4.3.21)<br />

where the integration contour is around ˇv ′ = 0. We now note that this result can be reproduced<br />

if we assume that near the pole (4.3.2) the partition function behaves as 8<br />

̂Φ(ˇρ, ˇσ, ˇv) −1 ∝ {φ e (ˇσ ′ ; a 0 , c 0 ) −1 φ m (ˇρ ′ ; b 0 , d 0 ) −1ˇv ′−2 + O(ˇv ′0 )} , (4.3.22)<br />

where 1/φ e,m (τ; k, l) denote the partition functions of half BPS dyons in the set B such that<br />

d h (a 0 Q ′ , c 0 Q ′ ) = 1 T<br />

∫ iM+T/2<br />

iM−T/2<br />

d h (b 0 P ′ , d 0 P ′ ) = 1 T ′ ∫ iM+T ′ /2<br />

iM−T ′ /2<br />

dτ e −iπQ′2 τ 1<br />

φ e (τ; a 0 , c 0 ) ,<br />

dτ e −iπP ′2 τ 1<br />

φ m (τ; b 0 , d 0 ) . (4.3.23)<br />

8 This formula suffers from the same type of subtleties described below eq.(4.3.11) with (Q, P ) replaced by<br />

(Q ′ , P ′ ) and (ˇρ, ˇσ, ˇv) replaced by (ˇρ ′ , ˇσ ′ , ˇv ′ ).

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!