23.02.2014 Views

MV design guide - Schneider Electric

MV design guide - Schneider Electric

MV design guide - Schneider Electric

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Design rules<br />

Short-circuit currents<br />

c Synchronous motors and compensators<br />

Xsc Sub-transient transient permanent<br />

high speed motors 15 % 25 % 80 %<br />

low speed motors 35 % 50 % 100 %<br />

compensators 25 % 40 % 160 %<br />

c Asynchronous motors only sub-transient<br />

Ir<br />

Z(Ω) =<br />

Id<br />

c Fault arcing<br />

•<br />

U 2<br />

Sr<br />

Isc z 5 to 8 Ir<br />

Isc z 3∑ Ir,<br />

contribution to Isc by current feedback<br />

(with I rated = Ir)<br />

Isc<br />

Id =<br />

1.3 to 2<br />

c Equivalent impedance of a component through a transformer<br />

v for example, for a low voltage fault, the contribution<br />

of an HV cable upstream of an HV/LV transformer will be:<br />

R2 = R1( U2 ) 2<br />

U1<br />

et<br />

X2 = X1 ( U2 ) 2<br />

U1<br />

ainsi<br />

U2<br />

Z2 = Z1 ( ) 2<br />

U1<br />

This equation is valid for all voltage levels in the cable,<br />

in other words, even through several series-mounted transformers.<br />

Power source<br />

Ra, Xa<br />

HV cable R1, X1<br />

n<br />

transformer RT, XT<br />

impedance at primary<br />

LV cable R2, X2<br />

A<br />

v Impedance seen from the fault location A:<br />

∑ R = R2 + RT R1 Ra<br />

+ + ∑ X =<br />

n 2 n 2 n 2 X2 + XT+ X1<br />

+<br />

n 2 n 2<br />

n: transformation ratio<br />

Xa<br />

n 2<br />

c Triangle of impedances<br />

Z = (R 2 + X 2 )<br />

Z<br />

X<br />

ϕ<br />

R<br />

16 Merlin Gerin <strong>MV</strong> <strong>design</strong> <strong>guide</strong> <strong>Schneider</strong> <strong>Electric</strong>

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!