28.04.2014 Views

Lecture Notes for 120 - UCLA Department of Mathematics

Lecture Notes for 120 - UCLA Department of Mathematics

Lecture Notes for 120 - UCLA Department of Mathematics

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

6.3. ACCELERATION 140<br />

Exercises.<br />

(1) Calculate<br />

6.3. Acceleration<br />

The goal here is to show that the tangential component <strong>of</strong> the acceleration <strong>of</strong><br />

acurveonaparametrizedsurfaceq (u, v) :U ! R 3 can be calculated intrinsically.<br />

The curve is parametrized in U as (u (t) ,v(t)) and becomes a space curve q (t) =<br />

q (u (t) ,v(t)) that lies on our parametrized surface.<br />

The velocity is<br />

˙q = dq<br />

dt = dq<br />

dt = @q<br />

@u<br />

du<br />

dt + @q<br />

@v<br />

dv<br />

dt = ⇥ @q<br />

@u<br />

@q<br />

@v<br />

⇤ apple du<br />

dt<br />

dv<br />

dt<br />

The acceleration can be calculated as if it were a space curve and we explored that<br />

in Chapter 6. Using the velocity representation we just gave and separating the<br />

tangential and normal components <strong>of</strong> the acceleration we obtain:<br />

¨q = ¨q I + ¨q II<br />

= ⇥ @q<br />

@u<br />

@q<br />

@v<br />

⇤<br />

[I]<br />

1 ⇥ @q<br />

@u<br />

@q<br />

@v<br />

⇤ t<br />

¨q +(¨q · N) N<br />

In Chapter 6 we worked with the normal component. Here we shall mostly focus<br />

on the tangential part.<br />

where<br />

Theorem 6.3.1. The acceleration can be calculated as<br />

2<br />

3<br />

¨q = ⇥ @q @q<br />

@u @v<br />

N ⇤ d 2 u<br />

dt<br />

+ u ( ˙q, ˙q)<br />

4<br />

2 d 2 v<br />

dt<br />

+ v ( ˙q, ˙q) 5<br />

2<br />

=<br />

w ( ˙q, ˙q) =<br />

✓ d 2 u<br />

dt 2 +<br />

X<br />

w 1,w 2=u,v<br />

II ( ˙q, ˙q)<br />

◆ ✓ @q d u 2<br />

( ˙q, ˙q)<br />

@u + v<br />

dt 2 +<br />

w dw 1 dw 2<br />

w 1w 2<br />

= ⇥ du<br />

dt dt<br />

dt<br />

◆ @q<br />

v ( ˙q, ˙q) + NII ( ˙q, ˙q) ,<br />

@v<br />

dv<br />

dt<br />

⇤ apple w<br />

uu<br />

w<br />

uv<br />

w<br />

vu<br />

w<br />

vv<br />

apple du<br />

dt<br />

dv<br />

dt<br />

Pro<strong>of</strong>. We start from the <strong>for</strong>mula <strong>for</strong> the velocity and take derivatives. This<br />

clearly requires us to be able to calculate derivatives <strong>of</strong> the tangent fields @q<br />

@u , @q<br />

@v .<br />

Fortunately the Gauss <strong>for</strong>mulas tell us how that is done. This leads us to the<br />

acceleration as follows<br />

¨q = d ✓ ⇥ @q<br />

⇤ apple ◆<br />

du<br />

@q dt<br />

dt<br />

@u @v dv<br />

dt<br />

= ⇥ @q<br />

@u<br />

@q<br />

@v<br />

which after using the chain rule<br />

⇤ " #<br />

d 2 u<br />

dt 2<br />

+<br />

d 2 v<br />

dt 2<br />

✓ d<br />

dt<br />

⇥ @q<br />

@u<br />

d<br />

dt = du @<br />

dt @u + dv @<br />

dt @v<br />

@q<br />

@v<br />

⇤ ◆apple du<br />

dt<br />

dv<br />

dt

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!