28.04.2014 Views

Lecture Notes for 120 - UCLA Department of Mathematics

Lecture Notes for 120 - UCLA Department of Mathematics

Lecture Notes for 120 - UCLA Department of Mathematics

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

4.4. THE FIRST FUNDAMENTAL FORM 92<br />

(b) Conclude that there is a surface <strong>of</strong> revolution with the same first<br />

fundamental <strong>for</strong>m.<br />

(9) Assume a surface has a parametrization q (u, v) where<br />

apple<br />

guu<br />

g uv<br />

g vu g vv<br />

=<br />

apple<br />

r<br />

2<br />

0<br />

0 r 2<br />

where r (u) > 0 is only a function <strong>of</strong> u. Showthatthereisareparametrization<br />

u = u (s) such that the first fundamental <strong>for</strong>m becomes<br />

apple apple<br />

gss g sv 1 0<br />

=<br />

g vs g vv 0 r 2<br />

(10) For a parametrized surface q (u, v) show that<br />

N ⇥ @q<br />

@u = g uu @q<br />

@v<br />

N ⇥ @q<br />

@v = g uv @q<br />

@v<br />

@q<br />

@u ⇥ @q<br />

@v<br />

@q<br />

@u ⇥ @q<br />

@v<br />

(11) If we have a parametrization where<br />

apple 1 0<br />

[I] =<br />

0 g vv<br />

g uv<br />

@q<br />

@u<br />

g vv<br />

@q<br />

@u<br />

then the coordinate function f (u, v) =u has<br />

ru = @q<br />

@u .<br />

(12) Show that it is always possible to find an orthogonal parametrization, i.e.,<br />

g uv vanishes.<br />

(13) Show that if<br />

@g uu<br />

@v<br />

= @g vv<br />

@u = g uv =0<br />

then we can reparametrize u and v separately, i.e., u = u (s) and v = v (t) ,<br />

in such a way that we obtain Cartesian coordinates:<br />

(14) Show that if<br />

then<br />

and conclude that<br />

g ss = g tt =1,<br />

g st = 0<br />

@ 2 q<br />

@u@v =0<br />

q (u, v) =F (u)+G (v)<br />

@g uu<br />

@v<br />

= @g vv<br />

@u =0<br />

Give an example where g uv 6=0.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!