28.04.2014 Views

Lecture Notes for 120 - UCLA Department of Mathematics

Lecture Notes for 120 - UCLA Department of Mathematics

Lecture Notes for 120 - UCLA Department of Mathematics

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

4.5. SPECIAL MAPS AND PARAMETRIZATIONS 95<br />

Pro<strong>of</strong>. Assume we have a different parametrization q (s, t) :V ! M and a<br />

new region T ⇢ V with q (R) =q (T ) and the property that the reparametrization<br />

(u (s, t) ,v(s, t)) : T ! R is a diffeomorphism. Then<br />

ˆ<br />

p<br />

Area (q (R)) = det [I]dudv<br />

=<br />

=<br />

=<br />

=<br />

=<br />

=<br />

ˆ<br />

ˆ<br />

ˆ<br />

ˆ<br />

ˆ<br />

ˆ<br />

R<br />

R<br />

R<br />

R<br />

R<br />

R<br />

R<br />

r<br />

det<br />

v<br />

u<br />

t det<br />

v<br />

u<br />

t det<br />

s<br />

det<br />

⇣ ⇥ @q<br />

@u<br />

✓ ⇥ @q<br />

@s<br />

apple @s<br />

@u<br />

@t<br />

@u<br />

apple @s<br />

@u<br />

@t<br />

@u<br />

q ⇥<br />

det @q<br />

@s<br />

q ⇥<br />

det @q<br />

@s<br />

@q<br />

@v<br />

@s<br />

@v<br />

@t<br />

@v<br />

@q<br />

@t<br />

@q<br />

@t<br />

@q<br />

@t<br />

@s<br />

@v<br />

@t<br />

@v<br />

⇤ t ⇥ @q<br />

@u<br />

⇤ apple @s<br />

@u<br />

@t<br />

@u<br />

t ⇥ @q<br />

@s<br />

@q<br />

@v<br />

@s<br />

@v<br />

@t<br />

@v<br />

@q<br />

@t<br />

t q ⇥<br />

det @q<br />

@s<br />

⇤ t ⇥ @q<br />

@s<br />

⇤ t ⇥ @q<br />

@s<br />

@q<br />

@t<br />

@q<br />

@t<br />

⇤ ⌘ dudv<br />

◆ t<br />

⇥ @q<br />

@s<br />

⇤ t ⇥ @q<br />

@s<br />

@q<br />

@t<br />

@q<br />

@t<br />

⇤ t ⇥ @q<br />

@s<br />

⇤<br />

det<br />

apple @s<br />

⇤<br />

dsdt<br />

@u<br />

@t<br />

@u<br />

@q<br />

@t<br />

@s<br />

@v<br />

@t<br />

@v<br />

⇤ apple @s<br />

⇤ apple @s<br />

@q<br />

@t<br />

@u<br />

@t<br />

@u<br />

@u<br />

@t<br />

@u<br />

@s<br />

@v<br />

@t<br />

@v<br />

@s<br />

@v<br />

@t<br />

@v<br />

!<br />

⇤ s det<br />

apple @s<br />

dudv<br />

where the last equality follows from the change <strong>of</strong> variables <strong>for</strong>mula <strong>for</strong> integrals.<br />

@u<br />

@t<br />

@u<br />

⇤<br />

!<br />

dudv<br />

dudv<br />

@s<br />

@v<br />

@t<br />

@v<br />

dudv<br />

Exercises.<br />

(1) Check if the parameterization q (t, )=t (cos , sin , 1) <strong>for</strong> the cone is an<br />

isometry, area preserving, or con<strong>for</strong>mal? Can the surface be reparametrized<br />

to have any <strong>of</strong> these properties?<br />

(2) Show that he inversion map<br />

F (q) =<br />

q<br />

|q| 2<br />

is a con<strong>for</strong>mal map <strong>of</strong> R n 0 to it self.<br />

(3) Show that the stereographic projections q ± R n ! R n ⇥ R = R n+1 defined<br />

by<br />

q ± (q) =(q, 0) + 1 |q|2<br />

2<br />

(q, ⌥1)<br />

1+|q|<br />

are con<strong>for</strong>mal parametrizations <strong>of</strong> the unit sphere.<br />

(4) Show that Enneper’s surface<br />

✓<br />

q (u, v) = u<br />

1<br />

3 u3 + uv 2 ,v<br />

◆<br />

1<br />

3 v3 + vu 2 ,u 2 v 2<br />

defines a con<strong>for</strong>mal parametrization.<br />

(5) Consider a map F : S 2 ! P , where P = {z =1} is the plane tangent<br />

to the North Pole, that takes meridians to radial lines tangent to the<br />

meridian at the North Pole. Sometimes the map might just be defined on<br />

part <strong>of</strong> the sphere such as the upper hemisphere.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!