28.04.2014 Views

Lecture Notes for 120 - UCLA Department of Mathematics

Lecture Notes for 120 - UCLA Department of Mathematics

Lecture Notes for 120 - UCLA Department of Mathematics

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

7.6. THE UPPER HALF PLANE 165<br />

7.6.1. The isometries <strong>of</strong> H. Our first observation is that the first fundamental<br />

<strong>for</strong>m doesn’t depend on u, so the trans<strong>for</strong>mations<br />

F : H ! H<br />

F (u, v) = (u + u 0 ,v)<br />

must be isometries. Let us check what it means <strong>for</strong> a general trans<strong>for</strong>mation<br />

F (u, v) =(F u (u, v) ,F v (u, v)) to be a isometry. Let p =(u, v) and q = F (u, v)<br />

apple 1<br />

apple "<br />

#<br />

v<br />

0<br />

@F<br />

u<br />

@F v<br />

1<br />

apple<br />

0<br />

@F<br />

u<br />

@F u<br />

2<br />

1 = @u @u (F v (u,v)) 2 @u @v<br />

1<br />

0<br />

v<br />

0 2 (F v (u,v)) 2<br />

=<br />

=<br />

@F u<br />

@v<br />

@F v<br />

@v<br />

apple<br />

1<br />

@F<br />

u<br />

(F v (u, v)) 2 @u<br />

"<br />

1<br />

(F v (u, v)) 2<br />

@F v<br />

@u<br />

@F v<br />

@v<br />

@F v<br />

@u<br />

@F v<br />

apple @F<br />

u<br />

@u<br />

@F v<br />

@F u<br />

@v<br />

@F v<br />

@v @u @v<br />

@F u 2<br />

@u +<br />

@F v 2 @F u @F u<br />

@u @v @u<br />

+ @F v @F v<br />

@u @v<br />

@F u<br />

@u<br />

+ @F v @F v @F u 2<br />

@u @v @v +<br />

@F v 2<br />

@v<br />

@F u<br />

@v<br />

@F u<br />

@v<br />

This tells us<br />

✓ ◆ @F<br />

u 2 ✓ ◆ @F<br />

v 2<br />

+ = (F v (u, v)) 2 ✓ ◆ @F<br />

u 2 ✓ ◆ @F<br />

v 2<br />

@v @v<br />

v 2 = + ,<br />

@u @u<br />

@F u @F u<br />

@v @u + @Fv @F v<br />

= 0<br />

@u @v<br />

In particular, we see that the translations F (u, v) =(u + u 0 ,v) really are isometries.<br />

Could there be isometries where F only depends on what happens to v?<br />

We can check an even more general situation: F (u, v) =(u, f (u, v)) where the<br />

equations reduce to<br />

✓ ◆ 2 ✓ ◆ 2 ✓ ◆ 2 @f<br />

f (u, v)<br />

@f<br />

=<br />

=1+ ,<br />

@v<br />

v<br />

@u<br />

@f @f<br />

= 0<br />

@u @v<br />

So first we note that @f<br />

@v<br />

6=0from the first equation, the second then implies that<br />

@f<br />

@u<br />

=0, which then from the first equation gives us that f (u, v) =v is the only<br />

possibility. Next let’s try F (u, v) =(g (u) ,f(v)) . This reduces to<br />

✓ ◆ 2 df<br />

=<br />

dv<br />

✓ ◆ 2 f (v)<br />

=<br />

v<br />

✓ ◆ 2 dg<br />

du<br />

So all trans<strong>for</strong>mations <strong>of</strong> the <strong>for</strong>m F (u, v) =c (u, v) where c>0 is constant are<br />

also isometries. Note that these maps are only similarities in the Euclidean metric,<br />

but have now become genuine isometries. This might give us the idea to check<br />

maps <strong>of</strong> the <strong>for</strong>m F (u, v) =h (u, v)(u, v) . This is still a bit general so we make<br />

the reasonable assumption that h doesn’t depend on the direction <strong>of</strong> (u, v) , i.e.,<br />

F (u, v) =h u 2 + v 2 (u, v) . Then<br />

#<br />

apple @F<br />

u<br />

@u<br />

@F v<br />

@u<br />

@F u<br />

@v<br />

@F v<br />

@v<br />

apple h +2u<br />

=<br />

2 h 0 2uvh 0<br />

2uvh 0 h +2v 2 h 0

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!