28.04.2014 Views

Lecture Notes for 120 - UCLA Department of Mathematics

Lecture Notes for 120 - UCLA Department of Mathematics

Lecture Notes for 120 - UCLA Department of Mathematics

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

7.2. UNPARAMETRIZED GEODESICS 159<br />

(4) Let q (t) be a unit speed geodesic on a surface in space. Show that<br />

0 = apple g<br />

apple = apple n<br />

⌧ = ⌧ g<br />

where apple and ⌧ are the curvature and torsion <strong>of</strong> q (t) as a space curve.<br />

7.2. Unparametrized Geodesics<br />

It is <strong>of</strong>ten simpler to find the unparametrized <strong>for</strong>m <strong>of</strong> the geodesics, i.e., in<br />

agivenparametrizationtheyareeasiert<strong>of</strong>indasfunctionsu (v) or v (u) . We<br />

start with a tricky characterization showing that one can characterize geodesics<br />

without referring to the arclength parameter. The idea is that a regular curve can<br />

be reparametrized to be a geodesic if and only if its tangential acceleration ¨q I is<br />

tangent to the curve.<br />

Lemma 7.2.1. A regular curve q (t) =q (u (t) ,v(t)) can be reparametrized as<br />

a geodesic if and only if<br />

✓<br />

dv d 2 ◆<br />

u<br />

dt dt 2 + u ( ˙q, ˙q) = du ✓ d 2 ◆<br />

v<br />

dt dt 2 + v ( ˙q, ˙q) .<br />

Pro<strong>of</strong>. Let s correspond to a reparametrization <strong>of</strong> the curve. When switching<br />

from t to s we note that the left hand side becomes<br />

✓<br />

dv d 2 ◆<br />

u<br />

dt dt 2 + u ( ˙q, ˙q) = dv ✓ d 2 ✓<br />

u dq<br />

dt dt 2 + u dt , dq ◆◆<br />

dt<br />

= ds dv d 2 ✓ ◆ 2<br />

s du ds<br />

dt ds dt 2 ds + d 2 ✓<br />

u ds<br />

dt ds 2 + u dq<br />

dt ds , ds ◆ !<br />

dq<br />

dt ds<br />

= ds dv d 2 ✓ ◆ 2<br />

s du ds<br />

dt ds dt 2 ds + d 2 ✓ ◆ 2 ✓<br />

u ds<br />

dt ds 2 + u dq<br />

dt ds , dq ◆ !<br />

ds<br />

= ds d 2 ✓<br />

s dv du ds<br />

dt dt 2 ds ds + dt<br />

◆ 3<br />

dv<br />

ds<br />

✓ d 2 u<br />

ds 2 +<br />

with a similar <strong>for</strong>mula <strong>for</strong> the right hand side. Here the first term<br />

ds d 2 s dv du<br />

dt dt 2 ds ds<br />

✓ dq u<br />

ds , dq<br />

ds<br />

is the same on both sides, so we have shown that the equation is actually independent<br />

<strong>of</strong> parametrizations. In other words if it holds <strong>for</strong> one parametrization it holds<br />

<strong>for</strong> all reparametrizations.<br />

If q is a geodesic then the <strong>for</strong>mula clearly holds <strong>for</strong> the arclength parameter.<br />

Conversely if the equation holds <strong>for</strong> some parameter then it also holds <strong>for</strong> the<br />

arclength parameter. Being parametrized by arclength gives us the equation<br />

I ˙q, ¨q I = ⇥ du<br />

dt<br />

dv<br />

dt<br />

⇤ apple g uu<br />

"<br />

g uv<br />

g vu g vv<br />

d 2 u<br />

dt<br />

+ 2 u ( ˙q, ˙q)<br />

d 2 v<br />

dt<br />

+ 2 v ( ˙q, ˙q)<br />

#<br />

=0<br />

◆◆

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!