28.04.2014 Views

Lecture Notes for 120 - UCLA Department of Mathematics

Lecture Notes for 120 - UCLA Department of Mathematics

Lecture Notes for 120 - UCLA Department of Mathematics

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

4.3. THE ABSTRACT FRAMEWORK 84<br />

Be<strong>for</strong>e discussing general surfaces it might be instructive to see what happens<br />

if q (u, v) :U ! R 2 is simply a reparametrization <strong>of</strong> the plane. Thus @q<br />

@u , @q<br />

@v<br />

<strong>for</strong>m<br />

abasisateachpointq. Taking partial derivatives <strong>of</strong> these fields give us<br />

@ ⇥ @q<br />

⇤ h<br />

i<br />

@q<br />

=<br />

@ 2 q @ 2 q<br />

= ⇥ ⇤<br />

@q @q<br />

@u<br />

@u @v<br />

@u 2 @u@v @u @v [ u] ,<br />

@ ⇥ @q<br />

⇤ h<br />

i<br />

@q<br />

=<br />

@q @ 2 q<br />

= ⇥ ⇤<br />

@q @q<br />

@v<br />

@u @v<br />

@v@u @v 2<br />

@u @v [ v]<br />

or in condensed <strong>for</strong>m<br />

@ ⇥ @q<br />

⇤ h<br />

i<br />

@q<br />

@w<br />

@u @v =<br />

@ 2 q @ 2 q<br />

= ⇥ ⇤<br />

@q @q<br />

@w@u @w@v @u @v [ w] ,w= u, v<br />

The matrices [ w] tell us how the tangent fields change with respect to themselves.<br />

Agoodexamplecomesfromconsideringpolarcoordinatesq (r, ✓) =(r cos ✓, r sin ✓)<br />

apple<br />

@q cos ✓<br />

=<br />

, @q apple<br />

@r sin ✓ @✓ = r sin ✓<br />

r cos ✓<br />

@ 2 apple<br />

apple<br />

q<br />

= @2 q<br />

@r@✓ @✓@r = sin ✓<br />

, @2 q<br />

cos ✓ @r 2 =0, @2 q<br />

@✓ 2 = r cos ✓<br />

r sin ✓<br />

so<br />

@ ⇥ @q<br />

⇤ h<br />

i<br />

@q<br />

=<br />

@ 2 q @ 2 q<br />

= ⇥ ⇤ apple @q @q 0 0<br />

@r<br />

@r @✓<br />

@r@r @r@✓<br />

@r @✓<br />

1<br />

0<br />

r<br />

@ ⇥ @q<br />

⇤ h<br />

i<br />

@q<br />

=<br />

@ 2 q @ 2 q<br />

= ⇥ ⇤ apple @q @q 0 r<br />

@✓<br />

@r @✓<br />

@✓@r @✓@✓<br />

@r @✓ 1<br />

r<br />

0<br />

apple 0 0<br />

[ r] =<br />

1 ,<br />

0<br />

r<br />

apple 0 r<br />

[ ✓] =<br />

1<br />

r<br />

0<br />

The key is that only Cartesian coordinates have the property that its coordinate<br />

fields are constant. When using general coordinates we are naturally<br />

<strong>for</strong>ced to find these quantities. To see why this is, consider a curve q (t) =<br />

(r (t) cos ✓ (t) ,r(t)sin✓ (t)) in the plane. Its velocity is naturally given by<br />

˙q =ṙ @q @q<br />

+ ˙✓<br />

@r @✓<br />

If we wish to calculate its acceleration, then we must compute the derivatives <strong>of</strong> the<br />

coordinate fields. This involves the chain rule as well as the <strong>for</strong>mulas just developed<br />

¨q = ¨r @q @q<br />

+ ¨✓<br />

@r @✓ +ṙ d @q<br />

dt<br />

= ¨r @q<br />

✓<br />

@q dr<br />

+ ¨✓<br />

@r @✓ +ṙ dt<br />

= ¨r @q @q<br />

+ ¨✓<br />

@r<br />

= ¨r @q<br />

=<br />

⇣<br />

¨r<br />

@r + ˙✓ d @q<br />

dt @✓<br />

@<br />

@r + d✓ @<br />

dt @✓<br />

◆ ✓ @q<br />

@r + ˙✓ dr<br />

dt<br />

@✓ +ṙ2 @2 q<br />

@r 2 +2ṙ ˙✓ @2 q<br />

@r@✓ + ˙✓ 2 @2 q<br />

@✓ 2<br />

@q<br />

+ ¨✓<br />

@r @✓ +2ṙ ˙✓ 1 @q<br />

˙✓ 2 r @q<br />

r @✓<br />

!<br />

@r<br />

r ˙✓ 2⌘ @q<br />

@r + ¨✓ 2ṙ ˙✓ @q<br />

+<br />

r @✓<br />

@<br />

@r + d✓<br />

dt<br />

◆<br />

@ @q<br />

@✓ @✓

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!