30.08.2014 Views

chemia - Studia

chemia - Studia

chemia - Studia

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

ALI REZA ASHRAFI, HOSSEIN SHABANI, MIRCEA V. DIUDEA<br />

Let xi<br />

∈ Vi<br />

, 0 ≤ i ≤ k . In each orbit d ( v)<br />

= d(<br />

xi<br />

) when v is a fixed<br />

element of V<br />

i<br />

. Define:<br />

0<br />

1<br />

2<br />

s−1<br />

α ( t,<br />

s)<br />

= (1 + t).3<br />

+ (2 + t).3<br />

+ (3 + t).3<br />

+ L+<br />

( s + t)3<br />

.<br />

s<br />

Then obviously α ( t,<br />

s)<br />

= 1 4[1 − 2t<br />

+ (2s<br />

+ 2t<br />

−1).3<br />

] . Therefore,<br />

140<br />

d( x ) = α ( i,<br />

k)<br />

+ α(0,<br />

k − i)<br />

+ [ i − j + 2α<br />

( i − j,<br />

k − j)]<br />

i<br />

i<br />

∑<br />

j = 0<br />

To simplify above equation, we compute d ( x i<br />

) . We claim that<br />

k + 1<br />

5 k<br />

k 3 −i<br />

d(<br />

xi<br />

) = 1+<br />

(2k<br />

− ).3 + (2×<br />

3 ). i + ( ). 3 .<br />

2<br />

2<br />

We now compute the Wiener and Balaban indices of D[k]. The<br />

Wiener index of a graph G is half of the summation of all d (v)<br />

over all<br />

vertices of G . From the orbits of the action of Aut ( D[<br />

k])<br />

on V ( D[<br />

k])<br />

, one<br />

k<br />

1 ⎛<br />

i−1<br />

⎞<br />

can see that W ( G)<br />

= ⎜∑[4×<br />

3 d(<br />

xi<br />

)] + d(<br />

x0)<br />

⎟ . So the Wiener index of<br />

2 ⎝ i=<br />

1<br />

⎠<br />

D[k] is given by the following formula:<br />

1<br />

1<br />

2<br />

W ( D[<br />

k])<br />

= .<br />

.(4 + 16k<br />

+ (144k<br />

+ 16k)3<br />

2<br />

2k<br />

k<br />

4 (32k<br />

−12k<br />

+ 1)3 + (24k<br />

− 4)3 + 4<br />

+ (416k<br />

3<br />

−16k<br />

2<br />

− 40k<br />

+ 5)3<br />

2k<br />

+ (384k<br />

4<br />

− 80k<br />

3<br />

− 44k<br />

2<br />

+ 14k<br />

−1)3<br />

Corollary 2. The orbits of the action of Aut ( D[<br />

k])<br />

on E ( D[<br />

k])<br />

are<br />

E = {1,2,3,4}<br />

1 , … , { 1 2 (3 k −1<br />

1), ,2 (3 k<br />

E = + × − K × − 1)}<br />

.<br />

k<br />

Since D[k] is a tree, μ ( D[<br />

k])<br />

= 0 and next,<br />

k<br />

i−1<br />

k 4×<br />

3<br />

J ( D[<br />

k])<br />

= 2×<br />

(3 −1)<br />

∑<br />

i= 1 d(<br />

xi<br />

−1)<br />

d(<br />

xi<br />

)<br />

To simplify above equation, we first compute d( xi<br />

− 1)<br />

d(<br />

xi<br />

) . We have:<br />

k k 45 2k<br />

2k<br />

2 2k<br />

d(<br />

xi<br />

−1)<br />

d(<br />

xi<br />

) = (1 − 7.3 + 4k3<br />

+ .3 −14k3<br />

+ 4k<br />

3 ) +<br />

4<br />

k 2k<br />

2k<br />

2k<br />

2 k 2k<br />

2k<br />

−i<br />

(4.3 −14.3<br />

+ 8k3<br />

) i + (4.3 ) i + (6.3 −18.3<br />

+ 12k3<br />

)3<br />

2k<br />

−i<br />

27 2k<br />

−2i<br />

+ (12.3 ) i3<br />

+ ( .3 )3<br />

4<br />

2 −i<br />

−i<br />

−2i<br />

Define: f ( i,<br />

k)<br />

= d(<br />

x ) d(<br />

x ) = α + βi<br />

+ λi<br />

+ γ 3 + δi3<br />

μ , where,<br />

i− 1 i<br />

+ 3<br />

3k<br />

)<br />

k

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!