30.08.2014 Views

chemia - Studia

chemia - Studia

chemia - Studia

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

MAHDIEH AZARI, ALI IRANMANESH, ABOLFAZL TEHRANIAN<br />

Definition 4. Let G = ( V ( G),<br />

E(<br />

G))<br />

be a graph.<br />

(i) Let u ∈ V (G)<br />

. Set; Δ<br />

u<br />

= { z ∈V<br />

( G) :[ z,<br />

u]<br />

∈ E(<br />

G)}<br />

. In fact, Δ<br />

u<br />

is the<br />

set of all vertices of G , which are adjacent to u. Suppose that, δ<br />

u<br />

is the number<br />

of all vertices of G, which are adjacent to u. Clearly, δ = Δ deg( u G).<br />

u u<br />

=<br />

(ii) For each pair of distinct vertices u, v ∈ V ( G)<br />

, let δ<br />

( u,<br />

v)<br />

be the<br />

number of all vertices of G , which are adjacent both to u and v. Obviously,<br />

δ = Δ I Δ .<br />

( u,<br />

v)<br />

u<br />

v<br />

(iii) Let u, v and z be three vertices of G, which every pair of them is<br />

distinct. Assume that, δ<br />

( u,<br />

v,<br />

z)<br />

denotes the number of all vertices of G which are<br />

adjacent to vertices u, v and z. It is easy to see that, δ = Δ I Δ I Δ .<br />

( u,<br />

v,<br />

z)<br />

(iv) Suppose that, u, v and z be three vertices of graph G , which every<br />

pair of them is distinct. Denote by N<br />

( z, u ~ , v ~ )<br />

, the number of all vertices of G,<br />

which are adjacent to z, but neither to u nor to v. By the definition of N<br />

( z, u ~ , v ~ )<br />

,<br />

we have:<br />

N = Δ − ( Δ U Δ ) = Δ − Δ I ( Δ U Δ ) = Δ − ( Δ I Δ ) U ( Δ I Δ ) =<br />

Δ<br />

( z, u ~ , v ~ ) z u v z z u v z z u z v<br />

z<br />

− ( Δ<br />

z<br />

Δu<br />

+ Δ<br />

z<br />

I Δv<br />

− Δ<br />

z<br />

I Δu<br />

I Δv<br />

) = δ<br />

z<br />

− δ(<br />

z,<br />

u)<br />

− δ(<br />

z,<br />

v)<br />

+ δ(<br />

z,<br />

u,<br />

v)<br />

I .<br />

Proposition 5.<br />

( ) 1<br />

2⎛<br />

V G1<br />

+<br />

⎛ ⎞ ⎞ 1<br />

∑d0 ( e,<br />

f G1[<br />

G2]<br />

) = E( G ) ⎜<br />

2<br />

W ( G1<br />

) ⎟<br />

⎜<br />

⎟ +<br />

− V ( G1<br />

) (2M1(<br />

G2)<br />

− N(<br />

G2))<br />

,<br />

{ e,<br />

f } ∈A<br />

2<br />

⎝⎝<br />

⎠ ⎠ 4<br />

N(<br />

G ) =<br />

N .<br />

where,<br />

2 ∑ ∑<br />

( z , ~ , ~ 2 u2<br />

v2<br />

)<br />

[ u2 , v2<br />

] ∈E(<br />

G2<br />

) z2<br />

∈V<br />

( G2<br />

) −(<br />

Δ u UΔ<br />

)<br />

2 v2<br />

Proof. At first, we need to find A<br />

2<br />

and A2 U A3<br />

. It is easy to see that<br />

1<br />

1<br />

A2<br />

= V ( G1<br />

) ∑ ∑N(<br />

z , ~ , ~<br />

2 u2<br />

v2<br />

)<br />

= V ( G1 ) N(<br />

G 2<br />

) ,<br />

4<br />

4<br />

A U A<br />

1<br />

2<br />

1<br />

2<br />

[ u , v2<br />

] ∈E(<br />

G2<br />

) z2∈V<br />

( G2<br />

) −(<br />

Δ u UΔv<br />

)<br />

2 2 2<br />

1<br />

= V ( G1<br />

) ∑<br />

2<br />

( E(<br />

G<br />

) − ( δ<br />

+ δ<br />

2 3<br />

2 u2<br />

v2<br />

[ u2 , v2<br />

] ∈E(<br />

G2<br />

)<br />

⎛<br />

V ( G ⎜<br />

1)<br />

⎝<br />

∑<br />

[ u v ]<br />

E(<br />

G<br />

) −<br />

∑<br />

u<br />

−1))<br />

=<br />

∑<br />

( δ<br />

u<br />

+ δ ) + 1<br />

2 v2<br />

2<br />

, ∈E(<br />

G )<br />

∈E(<br />

G )<br />

[ u , v ] ∈E(<br />

G )<br />

[ u , v ]<br />

2 2 2<br />

2 2 2<br />

2 2 2<br />

2<br />

V ( G1 ) ( E(<br />

G2)<br />

+ E(<br />

G2)<br />

− M1(<br />

G2))<br />

,<br />

v<br />

⎞<br />

⎟<br />

=<br />

⎠<br />

z<br />

190

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!