30.08.2014 Views

chemia - Studia

chemia - Studia

chemia - Studia

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

COMPUTATION OF THE FIRST EDGE WIENER INDEX OF A COMPOSITION OF GRAPHS<br />

1<br />

V ( G1 ) (2M1(<br />

G2)<br />

− N(<br />

G2))<br />

,<br />

4<br />

where Min ( G ) =<br />

min{ d(<br />

u , v G ), d(<br />

u , z G )} and<br />

N(<br />

G ) =<br />

2<br />

1<br />

∑<br />

∑<br />

∑<br />

u1∈V<br />

( G1<br />

)[<br />

v1<br />

, z1<br />

] ∈E(<br />

G1<br />

)<br />

∑<br />

N<br />

( z , ~ , ~<br />

2 u2<br />

v2<br />

)<br />

[ u2 , v2<br />

] ∈E(<br />

G2<br />

) z2∈V<br />

( G2<br />

) −(<br />

Δ u UΔ<br />

)<br />

2 v2<br />

Proof. Recall that, each pair of the sets A, B and C is disjoint and union of<br />

them is the set of all two element subsets of E ( G [ G 1 2])<br />

. Now, using the<br />

definition of the first edge Wiener index, we obtain:<br />

W<br />

e<br />

( G1[<br />

G2])<br />

= ∑d0(<br />

e,<br />

f G1[<br />

G2])<br />

=<br />

+<br />

0<br />

∑d0 ( e,<br />

f G1[<br />

G2])<br />

∑<br />

{ e,<br />

f } ∈B<br />

{ e,<br />

f } ⊆ E(<br />

G [ G ])<br />

1<br />

2<br />

.<br />

1<br />

1<br />

1<br />

{ e,<br />

f } ∈A<br />

1<br />

1<br />

1<br />

d0 ( e,<br />

f G1[<br />

G2])<br />

+ ∑d0 ( e,<br />

f G1[<br />

G2])<br />

. Now, by the above Lemmas,<br />

the proof is completed.<br />

{ e,<br />

f } ∈C<br />

REFERENCES<br />

1. H. Wiener, J. Am. Chem. Soc., 1947, 69, 17.<br />

2. F. Buckley and F. Harary, Distance in graphs, Addison-Wesley, Redwood, CA,<br />

1990.<br />

3. A.A. Dobrynin, R. Entringer and I. Gutman, Acta Appl. Math., 2001, 66, 211.<br />

4. A.A. Dobrynin, I. Gutman, S. Klavzar and P. Zigert, Acta Appl. Math., 2002,<br />

72, 247.<br />

5. A.A. Dobrynin and L.S. Mel’nikov, MATCH Commun. Math. Comput. Chem.,<br />

2004, 50, 145.<br />

6. A.A. Dobrynin and L.S. Mel’nikov, MATCH Commun. Math. Comput. Chem.,<br />

2005, 53, 209.<br />

7. I. Gutman, J. Serb. Chem. Soc, 2003, 68, 949.<br />

8. I. Gutman and O.E. Polansky, Mathematical concepts in organic chemistry,<br />

Springer-Verlag, Berlin, Germany, 1986.<br />

9. A. Heydari and B. Taeri, J. Comput. Theor. Nanosky, 2007, 4, 158.<br />

10. A. Iranmanesh, Y. Alizadeh and S. Mirzaie, Fullerenes Nanotubes Carbon<br />

Nanostruct., 2009, 17, 560.<br />

11. S. Klavzar and I. Gutman, Disc. Appl. Math., 1997, 80, 73.<br />

12. H.P. Schultz, J. Chem. Inf. Comput. Sci., 1989, 34, 227.<br />

13. G. Wagner, Acta Appl. Math., 2006, 91, 119.<br />

14. I. Gutman and N. Trinajstic, Chem. Phys. Lett., 1972, 17, 535.<br />

15. A. Iranmanesh, I. Gutman, O. Khormali and A. Mahmiani, MATCH Commun.<br />

Math. Comput. Chem., 2009, 61, 663.<br />

195

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!