30.08.2014 Views

chemia - Studia

chemia - Studia

chemia - Studia

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

COMPUTATION OF THE FIRST EDGE WIENER INDEX OF A COMPOSITION OF GRAPHS<br />

C3 = {{ e,<br />

f } ∈ C : e = [( u1,<br />

u2),(<br />

u1,<br />

t2)],<br />

f = [( v1,<br />

v2),(<br />

z1,<br />

z2)],<br />

u1,<br />

v1,<br />

z1<br />

∈V<br />

( G1<br />

),<br />

where u t , v , z ∈ V ( G ), v ≠ u , z ≠ }<br />

2, 2 2 2 2 1 1 1<br />

u1<br />

Clearly, every pair of the above sets is disjoint and U 3 C = C i<br />

.<br />

i=<br />

1<br />

In the following Proposition, we find d e,<br />

f G [ ]) for all { e,<br />

f } ∈ C .<br />

0( 1<br />

G2<br />

Proposition 3. Let { e,<br />

f } ∈ C .<br />

(i) If { e,<br />

f } ∈ C1<br />

, then d<br />

0<br />

( e,<br />

f G1[<br />

G2])<br />

= 1<br />

(ii) If { e,<br />

f } ∈ C2<br />

, then d<br />

0<br />

( e,<br />

f G1[<br />

G2])<br />

= 2<br />

(iii) If { e,<br />

f } ∈ C3<br />

, then<br />

d e,<br />

f G [ ]) = + min{ d(<br />

u , v G ), d(<br />

u , z )}<br />

,<br />

0( 1<br />

G2<br />

1<br />

1 1 1 1 1<br />

G1<br />

= [( u1,<br />

u2<br />

),( u1,<br />

t2<br />

)], f [( v1,<br />

v2<br />

),( z1,<br />

z2<br />

where e =<br />

)]<br />

Proof. (i) Let { e,<br />

f } ∈ C1<br />

and e = [( u1,<br />

u2<br />

),( u1,<br />

v2<br />

)], f = [( u1,<br />

u2<br />

),( z1,<br />

z2<br />

)] .<br />

By definition of d ( e,<br />

) , we have:<br />

0<br />

f<br />

d<br />

0( e,<br />

f G1[<br />

G2])<br />

= 1+<br />

min{ d((<br />

u1,<br />

u2),(<br />

u1,<br />

u2)<br />

G1[<br />

G2]),<br />

d((<br />

u1,<br />

u2),(<br />

z1,<br />

z2)<br />

G1[<br />

G2]),<br />

d(( u , v2),(<br />

u1,<br />

u2)<br />

G1[<br />

G2]),<br />

d((<br />

u1,<br />

v2),(<br />

z1,<br />

z2)<br />

G1[<br />

G2])}<br />

= 1+<br />

min{0,1,1,1} = 1+<br />

0<br />

1<br />

=<br />

(ii) Let { e,<br />

f } ∈ C2<br />

and e = [( u1,<br />

u2<br />

),( u1,<br />

v2<br />

)], f = [( u1,<br />

t2<br />

),( z1,<br />

z2<br />

)] .<br />

By definition of C 2<br />

, t2 ≠ u2<br />

, t2<br />

≠ v2<br />

. Thus, due to the distance between<br />

two vertices in G [ G 1 2]<br />

, the distances d (( u , ),( , ) [<br />

1<br />

u2<br />

u1<br />

t2<br />

G1<br />

G2])<br />

and<br />

d (( u1,<br />

v2),(<br />

u1,<br />

t2)<br />

G1[<br />

G2])<br />

are either 1 or 2. So<br />

d<br />

0( e,<br />

f G1[<br />

G2])<br />

= 1+<br />

min{ d((<br />

u1,<br />

u2),(<br />

u1,<br />

t2)<br />

G1[<br />

G2]),<br />

d((<br />

u1,<br />

u2),(<br />

z1,<br />

z2)<br />

G1[<br />

G2]),<br />

d (( u1,<br />

v2),(<br />

u1,<br />

t2)<br />

G1[<br />

G2]),<br />

d((<br />

u1,<br />

v2),(<br />

z1,<br />

z2)<br />

G1[<br />

G2])} =<br />

1<br />

1 2 1 2 1 2<br />

1 2 1 2 1 2<br />

=<br />

+ min{ d (( u , u ),( u , t ) G [ G ]),1, d((<br />

u , v ),( u , t ) G [ G ],1} = 1+<br />

1 2 .<br />

(iii) Let { e,<br />

f } ∈ C3<br />

and e = [( u1,<br />

u2),(<br />

u1,<br />

t2)],<br />

f = [( v1,<br />

v2),(<br />

z1,<br />

z2)]<br />

. By<br />

definition of C<br />

3<br />

, v1 ≠ u1, z1<br />

≠ u1<br />

. Therefore<br />

d e,<br />

f G [ G ]) = 1+<br />

min{ d((<br />

u , u ),( v , v ) G [ G ]), d((<br />

u , u ),( z , z ) G [ ]),<br />

0( 1 2<br />

1 2 1 2 1 2 1 2 1 2 1<br />

G2<br />

d (( u1,<br />

t2),(<br />

v1,<br />

v2)<br />

G1[<br />

G2]),<br />

d((<br />

u1,<br />

t2),(<br />

z1,<br />

z2)<br />

G1[<br />

G2])} =<br />

1<br />

1 1 1 1 1 1 1 1 1 1 1<br />

G1<br />

+ min{ d ( u , v G ), d(<br />

u , z G ), d(<br />

u , v G ), d(<br />

u , z )} =<br />

1<br />

1 1 1 1 1<br />

G1<br />

+ min{ d(<br />

u , v G ), d(<br />

u , z )} , and the proof is completed<br />

189<br />

1

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!