30.08.2014 Views

chemia - Studia

chemia - Studia

chemia - Studia

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

COMPUTATION OF THE FIRST EDGE WIENER INDEX OF A COMPOSITION OF GRAPHS<br />

Recall that, each pair of the sets A i<br />

( 1 ≤ i ≤ 4)<br />

is disjoint and U 4 A = A i<br />

,<br />

i=<br />

1<br />

then by<br />

Proposition 1, we have:<br />

∑<br />

∑ ∑<br />

d0( e,<br />

f G1[<br />

G2])<br />

= d0(<br />

e,<br />

f G1[<br />

G2])<br />

= A1<br />

+ 3 A2<br />

+ 2 A<br />

{ e,<br />

f } ∈ A<br />

i= 1 { e,<br />

f } ∈A<br />

4<br />

∑ { 1+<br />

d ( u1,<br />

v1<br />

G1<br />

) :{ e,<br />

f } ∈ A4<br />

, e = [( u1,<br />

u2),(<br />

u1,<br />

v2)],<br />

f = [( v1,<br />

z2),(<br />

v1,<br />

t2)]}<br />

=<br />

A 3 A + A + A +<br />

1<br />

+<br />

2<br />

2<br />

3 4<br />

∑ { d ( u1,<br />

v1<br />

G1<br />

) :{ e,<br />

f } ∈ A4<br />

, e = [( u1,<br />

u2<br />

),( u1,<br />

v2<br />

)], f = [( v1,<br />

z2<br />

),( v1,<br />

t2<br />

)]} =<br />

4<br />

U<br />

i=<br />

1<br />

⎜<br />

⎝<br />

A<br />

i<br />

+<br />

4<br />

∑<br />

A<br />

2<br />

+ ( A2<br />

+ A3<br />

) + A2<br />

+ E(<br />

G2<br />

) ∑ d(<br />

u1,<br />

v<br />

i<br />

i= ⊆V<br />

( G )<br />

i<br />

{ u , v }<br />

1 1 1 1<br />

A U A<br />

2<br />

⎛ V ( G1 ) E(<br />

G 2 )<br />

2<br />

2<br />

⎞<br />

⎟<br />

⎠<br />

3<br />

+<br />

E ( G2)<br />

W ( G1<br />

) =<br />

1<br />

2<br />

V ( G ) E(<br />

G<br />

2<br />

A<br />

2<br />

2<br />

1<br />

G ) =<br />

+ E( G2<br />

) W ( G1<br />

) = A + A2<br />

U A3<br />

+ A2<br />

+ E(<br />

G2<br />

) W ( G1<br />

) =<br />

1<br />

2<br />

1<br />

+ V ( G1 ) ( E(<br />

G2)<br />

+ E(<br />

G2)<br />

− M1(<br />

G2))<br />

+ V ( G1 ) N(<br />

G 2<br />

) +<br />

2<br />

4<br />

2<br />

2<br />

( ) − V ( G ) E(<br />

G ) + V ( G ) E(<br />

G ) + V ( G ) E(<br />

) ) −<br />

1 2<br />

1<br />

2<br />

1<br />

2<br />

1<br />

G2<br />

1<br />

1<br />

2<br />

V ( G1 ) M1(<br />

G2)<br />

+ V ( G1 ) N(<br />

G 2<br />

) + E ( G2)<br />

W ( G1<br />

) =<br />

2<br />

4<br />

( ) 1<br />

2⎛<br />

V G1<br />

+<br />

⎛ ⎞ ⎞ 1<br />

E( G ) ⎜<br />

2<br />

W ( G1<br />

) ⎟<br />

⎜<br />

⎟ +<br />

− V ( G1<br />

) (2M1(<br />

G2)<br />

− N(<br />

G2))<br />

2<br />

⎝⎝<br />

⎠ ⎠ 4<br />

Proposition 6.<br />

V ( G )<br />

2⎛<br />

2<br />

⎞<br />

4<br />

∑d0 ( e,<br />

f G1[<br />

G2]<br />

) = V ( G2)<br />

⎜ ⎟M1(<br />

G1<br />

) + V ( G2)<br />

We<br />

( G1<br />

)<br />

0<br />

{ e,<br />

f } ∈B<br />

⎝ 2 ⎠<br />

Proof. For the proof of this proposition, we need to obtain B , B and<br />

1 2<br />

B<br />

4<br />

. It is easy to see that:<br />

1<br />

2<br />

3<br />

+<br />

191

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!