12.07.2015 Views

enumeration of the number of spanning trees in some ... - Toubkal

enumeration of the number of spanning trees in some ... - Toubkal

enumeration of the number of spanning trees in some ... - Toubkal

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

7.3. Formulae for <strong>the</strong> Number <strong>of</strong> Spann<strong>in</strong>g Trees <strong>in</strong> a Maximal Planar Map 123(n − 1) 2 ≤ W (T n ) ≤ n(n2 −1)6[117]. The goal <strong>of</strong> this work is to give an <strong>in</strong>equality similar <strong>in</strong><strong>the</strong> case <strong>of</strong> planar maps. Let C n be a planar map with n vertices, <strong>the</strong>n <strong>the</strong> Wiener <strong>in</strong>dex<strong>of</strong> W (C n ) is m<strong>in</strong>imized by <strong>the</strong> maximal planar map W (E n ) with n vertices and maximizedby <strong>the</strong> path W (P n ) with n vertices. Now we can state <strong>the</strong> follow<strong>in</strong>g <strong>the</strong>orem.Theorem 7.2.17 Let C n be a simple planar map with n vertices, <strong>the</strong>nW (E n ) ≤ W (C n ) ≤ W (P n )Pro<strong>of</strong>: By Remark 7.2.10, In each deleted edge <strong>of</strong> C, we expand <strong>the</strong> Wiener <strong>in</strong>dex. Theconnected planar map obta<strong>in</strong>ed after delet<strong>in</strong>g all possible edges is a <strong>spann<strong>in</strong>g</strong> tree <strong>of</strong> C n ,On <strong>the</strong> o<strong>the</strong>r hand <strong>in</strong> <strong>the</strong> <strong>trees</strong>, <strong>the</strong> Wiener <strong>in</strong>dex is maximized by <strong>the</strong> path P n with nvertices, hence W (C n ) ≤ W (P n ).The rema<strong>in</strong><strong>in</strong>g premises is to show that: W (E n ) ≤ W (C n )• For n = 2, 3 or 4 :W (E n ) = 1 2 n(n − 1) and as W (C n) ≥ 1 2 n(n − 1) = W (E n), hence <strong>the</strong> result.• For n ≥ 5S<strong>in</strong>ce W (v, C n ) ≥ 2n − deg(v) − 2, we have :W (C n ) = 1 2≥ 1 2∑v∈V (E n )∑v∈V (E n )≥ n(n − 1) − 1 2W (v, E n )(2n − deg(v) − 2)∑v∈V (E n )deg(v)≥ n(n − 1) − |E(E n )| = W (E n )Remark 7.2.18 For a planar map C with n vertices, W (C n ) ≤ W (P n ) ( P n is <strong>the</strong> pathwith n vertices). The lower bound <strong>of</strong> W (C n ) is not yet known [54, 117]. But <strong>in</strong> case <strong>of</strong>planar maps, we have given <strong>in</strong> this section <strong>the</strong> upper bound that is <strong>the</strong> Wiener <strong>in</strong>dex <strong>in</strong><strong>the</strong> maximal planar map W (E n ).7.3 Formulae for <strong>the</strong> Number <strong>of</strong> Spann<strong>in</strong>g Trees <strong>in</strong> aMaximal Planar MapIn this section, we derive <strong>the</strong> explicit formula for <strong>the</strong> <strong>number</strong> <strong>of</strong> <strong>spann<strong>in</strong>g</strong> <strong>trees</strong> <strong>of</strong> <strong>the</strong>maximal planar map and deduce a formula for <strong>the</strong> <strong>number</strong> <strong>of</strong> <strong>spann<strong>in</strong>g</strong> <strong>trees</strong> <strong>of</strong> <strong>the</strong> crystalplanar map.□

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!