12.07.2015 Views

enumeration of the number of spanning trees in some ... - Toubkal

enumeration of the number of spanning trees in some ... - Toubkal

enumeration of the number of spanning trees in some ... - Toubkal

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Chapter 5The Number <strong>of</strong> Spann<strong>in</strong>g Trees <strong>of</strong>Certa<strong>in</strong> Families <strong>of</strong> Planar MapsIn this chapter, we are go<strong>in</strong>g to derive several easily computable formulae for certa<strong>in</strong>families <strong>of</strong> planar maps, and similar formulae for related generat<strong>in</strong>g series.5.1 IntroductionThe <strong>number</strong> <strong>of</strong> <strong>spann<strong>in</strong>g</strong> <strong>trees</strong> <strong>of</strong> a map C is <strong>the</strong> total <strong>number</strong> <strong>of</strong> dist<strong>in</strong>ct <strong>spann<strong>in</strong>g</strong> subgraphs<strong>of</strong> C that are <strong>trees</strong>. Even though <strong>the</strong> classic result, Matrix Tree Theorem expresses<strong>the</strong> <strong>number</strong> <strong>of</strong> <strong>spann<strong>in</strong>g</strong> <strong>trees</strong> τ(C) <strong>of</strong> a map C as a function <strong>of</strong> <strong>the</strong> determ<strong>in</strong>ant <strong>of</strong> amatrix that can be easily constructed from C’s <strong>in</strong>cidence matrix, <strong>in</strong> practice, this method<strong>of</strong> count<strong>in</strong>g <strong>spann<strong>in</strong>g</strong> <strong>trees</strong> by calculat<strong>in</strong>g determ<strong>in</strong>ants is <strong>in</strong>feasible for large planar maps(graphs embedded <strong>in</strong> <strong>the</strong> plane without edge-cross<strong>in</strong>gs). For <strong>some</strong> special classes <strong>of</strong> planarmaps, it is possible to give explicit, simple formulae for <strong>the</strong> <strong>number</strong> <strong>of</strong> <strong>spann<strong>in</strong>g</strong> <strong>trees</strong>. Inthis chapter, we apply our methods which we have seen <strong>in</strong> Chapter 4 to give <strong>the</strong> <strong>number</strong><strong>of</strong> <strong>spann<strong>in</strong>g</strong> <strong>trees</strong> <strong>in</strong> <strong>some</strong> special planar maps and derive several simple formulae for<strong>the</strong> <strong>number</strong> <strong>of</strong> <strong>spann<strong>in</strong>g</strong> <strong>trees</strong> <strong>of</strong> special families <strong>of</strong> planar maps. They are known as <strong>the</strong>n-Fan cha<strong>in</strong>s, <strong>the</strong> n-Grid cha<strong>in</strong>s, <strong>the</strong> n-tent cha<strong>in</strong>s, <strong>the</strong> n-Hexagonal cha<strong>in</strong>s, <strong>the</strong> n-Eightcha<strong>in</strong>s, <strong>the</strong> n-Barrel cha<strong>in</strong>s <strong>the</strong> n-Light cha<strong>in</strong>s, <strong>the</strong> n-Home cha<strong>in</strong>s, <strong>the</strong> n-Kite cha<strong>in</strong>s, <strong>the</strong>n-Envelope cha<strong>in</strong>s and <strong>the</strong> n-Diphenylene cha<strong>in</strong>s ... etc.5.2 The case <strong>of</strong> one cycleEach map hav<strong>in</strong>g two faces possesses one cycle. Let C be a planar map with two faces(i.e., a cycle) with n vertices, <strong>the</strong>n <strong>the</strong> complexity <strong>of</strong> C is equal to <strong>the</strong> length <strong>of</strong> its cycle(<strong>the</strong> length <strong>of</strong> a cycle is <strong>the</strong> <strong>number</strong> <strong>of</strong> edges that form this cycle); see Figure. 5.1.85

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!