12.07.2015 Views

enumeration of the number of spanning trees in some ... - Toubkal

enumeration of the number of spanning trees in some ... - Toubkal

enumeration of the number of spanning trees in some ... - Toubkal

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

3.4. Count<strong>in</strong>g <strong>the</strong> <strong>number</strong> <strong>of</strong> <strong>spann<strong>in</strong>g</strong> <strong>trees</strong> <strong>in</strong> graphs algebraically 61Now we want to show that if B is an (n − 1) × (n − 1) submatrix <strong>of</strong> M, <strong>the</strong>ndet B = 0 if <strong>the</strong> correspond<strong>in</strong>g n − 1 edges conta<strong>in</strong> a cycle, and det B = ±1 if <strong>the</strong>y forma <strong>spann<strong>in</strong>g</strong> tree <strong>of</strong> G. If <strong>the</strong> edges correspond<strong>in</strong>g to <strong>the</strong> columns conta<strong>in</strong> a cycle C, <strong>the</strong>n<strong>the</strong> columns sum to <strong>the</strong> zero vector when weighted with +1 or −1 determ<strong>in</strong>ed by whe<strong>the</strong>r<strong>the</strong> directed edge is followed forward or backward when follow<strong>in</strong>g <strong>the</strong> cycle. This columndependency implies det B = 0.For <strong>the</strong> o<strong>the</strong>r case, we use <strong>in</strong>duction on n. For n = 1, by convention a 0 × 0 matrixhas determ<strong>in</strong>ant 1. Now suppose n > 1, and let T be <strong>the</strong> <strong>spann<strong>in</strong>g</strong> tree whose edgesare <strong>the</strong> columns <strong>of</strong> B. S<strong>in</strong>ce T has at least two leaves, B conta<strong>in</strong>s a row correspond<strong>in</strong>gto a leaf x <strong>of</strong> T . This row has only one nonzero entry <strong>in</strong> B. When comput<strong>in</strong>g <strong>the</strong>determ<strong>in</strong>ant by expand<strong>in</strong>g along that row, <strong>the</strong> only submatrix B ′ given nonzero weight<strong>in</strong> <strong>the</strong> expansion corresponds to <strong>the</strong> <strong>spann<strong>in</strong>g</strong> subtree <strong>of</strong> G − x obta<strong>in</strong>ed by delet<strong>in</strong>g xand its <strong>in</strong>cident edge from T . S<strong>in</strong>ce B ′ is an (n − 2) × (n − 2) submatrix <strong>of</strong> <strong>the</strong> <strong>in</strong>cidencematrix for an orientation <strong>of</strong> G − x, <strong>the</strong> <strong>in</strong>duction hypo<strong>the</strong>sis implies that <strong>the</strong> determ<strong>in</strong>ant<strong>of</strong> B ′ is ±1, and multiply<strong>in</strong>g it by ±1 gives <strong>the</strong> same result for B.F<strong>in</strong>ally, we need to compute det L ∗ . Let M ∗ be <strong>the</strong> matrix obta<strong>in</strong>ed by delet<strong>in</strong>grow t <strong>of</strong> M, so L ∗ = M ∗ (M ∗ ) T . We may assume m ≥ n − 1, else both sides havedeterm<strong>in</strong>ant 0 and <strong>the</strong>re are no <strong>spann<strong>in</strong>g</strong> sub<strong>trees</strong>. The B<strong>in</strong>et-Cauchy formula expresses<strong>the</strong> determ<strong>in</strong>ant <strong>of</strong> a product <strong>of</strong> matrices, not necessarily square, <strong>in</strong> terms <strong>of</strong> <strong>the</strong> determ<strong>in</strong>ants<strong>of</strong> submatrices <strong>of</strong> <strong>the</strong> factors. In particular, if m ≥ p, A is a p × m matrix, andB is an m × p matrix, <strong>the</strong>n det AB = ∑ S det A S det B S , where <strong>the</strong> summation runs overall S ⊆ [m] consist<strong>in</strong>g <strong>of</strong> p <strong>in</strong>dices, A S is <strong>the</strong> submatrix <strong>of</strong> A hav<strong>in</strong>g <strong>the</strong> columns <strong>in</strong>dexedby S, and B S is <strong>the</strong> submatrix <strong>of</strong> B hav<strong>in</strong>g <strong>the</strong> rows <strong>in</strong>dexed by S. When we apply <strong>the</strong>B<strong>in</strong>et-Cauchy formula to L ∗ = M ∗ (M ∗ ) T , <strong>the</strong> submatrix A S is an (n − 1) × (n − 1)submatrix <strong>of</strong> M as discussed before, and B S = A T S . Hence <strong>the</strong> summation counts1 = (±1) 2 for each set <strong>of</strong> n − 1 edges correspond<strong>in</strong>g to a <strong>spann<strong>in</strong>g</strong> tree and 0 for eacho<strong>the</strong>r set <strong>of</strong> n − 1 edges.□Example 3.4.4 Consider <strong>the</strong> graph G that shown <strong>in</strong> <strong>the</strong> follow<strong>in</strong>g Figure 3.6, we shallcompute <strong>the</strong> <strong>number</strong> <strong>of</strong> <strong>spann<strong>in</strong>g</strong> <strong>trees</strong> <strong>of</strong> this graph by <strong>the</strong> matrix-tree <strong>the</strong>orem.Figure 3.6: A graph G and its adjacency matrix, degree matrix and Laplacian matrixThe degree (diagonal) matrix D for this graph is <strong>the</strong> 8 × 8 matrix and <strong>the</strong> adjacencymatrix A is <strong>the</strong> 8 × 8 matrix as follows:

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!