29.08.2018 Views

atw 2018-09v3

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 8/9 ı August/September<br />

References<br />

468<br />

AMNT <strong>2018</strong> | YOUNG SCIENTISTS' WORKSHOP<br />

| | Fig. 3-1.<br />

Overview of whole Nodalisation of the IPR-R1 (left) and 13 core channels (right) generated by the software for input deck<br />

generation.<br />

Power<br />

[kW]<br />

| | Tab. 3-2.<br />

Thermal hydraulic data IPR-R1.<br />

Core inlet<br />

temperature<br />

(Position 3)<br />

[°C]<br />

Core outlet<br />

temperature<br />

(Position 3)<br />

[°C]<br />

There is good agreement between<br />

the published RELAP calculations in<br />

[REI2009] and the calculated ATHLET<br />

data.<br />

4 Summary<br />

A new method based on a heuristic<br />

approach for modelling selected<br />

research reactor types in thermal<br />

hydraulic analysis codes is presented.<br />

This new approach allows a fast and<br />

reliable generation of the input deck’s<br />

fundamental elements despite limited<br />

technical documentation. Focusing on<br />

one MTR and one TRIGA design, the<br />

main steps of developing process and<br />

the characteristics of the new method<br />

are highlighted. This includes the<br />

Core inlet<br />

temperature<br />

(Position 8)<br />

[°C]<br />

Core outlet<br />

temperature<br />

(Position 3)<br />

[°C]<br />

Calculation 51 20.87 27.97 20.87 23.94<br />

Reference<br />

[REI2009]<br />

50 20.95 26.95 22.95 24.95<br />

abstraction and modularisation of<br />

research reactor plant designs as well<br />

as the conception of type-specific<br />

nodalisation. At the end of this paper,<br />

an exemplary MTR and TRIGA<br />

research reactor is presented, generated<br />

by the developed software.<br />

Focusing on the stationary conditions,<br />

there is a good agreement between<br />

the calculated and experimental data.<br />

This proves the basic functionality of<br />

the developed modelling system by<br />

generating a realistic plant model for<br />

TRIGA and MTR type. In future work,<br />

the nodalisation for both research reactor<br />

designs will be reviewed and<br />

tested against a range of safety transients<br />

and accidents.<br />

ABD2008A<br />

ABD2008B<br />

ABD2015<br />

I.D. Abdelrazek, E.A. Villarino:<br />

ETRR-2 Nuclear Reactor: Facility<br />

Specification; Coordinated<br />

Research Project on Innovative<br />

Methods in Research Reactor<br />

Analysis, organised by IAEA,<br />

October 2008.<br />

I.D. Abdelrazek, E.A. Villarino:<br />

ETRR-2 Nuclear Reactor:<br />

Experimental Results<br />

Coordinated Research Project<br />

on Innovative Methods in<br />

Research Reactor Analysis, organised<br />

by IAEA, October 2008.<br />

I.D. Abdelrazek, et al.: Thermal<br />

hydraulic analysis of ETRR-2<br />

using RELAP5 code, Kerntechnik<br />

80, 2015.<br />

ATH2016 G. Lerchl et.al.: ATHLET 3.1A<br />

User’s Manual, GRS-P-1/Vol.1,<br />

Ref.7, March 2016.<br />

IAEA2005<br />

IAEA2016<br />

IAEA2016B<br />

REI2009<br />

RRDB<strong>2018</strong><br />

Authors<br />

IAEA: Research reactor<br />

utilization, safety, decommissioning,<br />

fuel and waste management,<br />

ISBN 92-0-113904-7,<br />

IAEA 2005.<br />

IAEA: Safety of Research<br />

Reactors, IAEA Safety Standards<br />

Series No. SSR-3, Vienna<br />

Austria, 2016, ISSN 1020-525X.<br />

IAEA: History, development and<br />

future of TRIGA research<br />

reactors, Technical Report<br />

Series No. 482, ISBN 978-92-0-<br />

102016-1, IAEA 2016.<br />

P. A. L. Resi, et al.: Assessment of<br />

a RELAP5 model for the IPR-R1<br />

TRIGA research reactor, International<br />

Nuclear Atlantic<br />

Conference – INAC 2009,<br />

ISBN: 978-85-99141-03-8.<br />

IAEA: Research Reactor<br />

Database, Website URL:<br />

https://nucleus.iaea.org/RRDB/<br />

RR/ReactorSearch.aspx?rf=1<br />

(01.02.<strong>2018</strong>).<br />

Vera Koppers<br />

Prof. Dr.-Ing. Marco K. Koch<br />

Responsible Professor<br />

Ruhr-Universität Bochum (RUB)<br />

Universitätsstraße 150<br />

44801 Bochum, Germany<br />

| | Fig. 3-2.<br />

Core inlet (left) and core outlet (right) temperature.<br />

AMNT <strong>2018</strong> | Young Scientists' Workshop<br />

Heuristic Methods in Modelling Research Reactors for Deterministic Safety Analysis ı Vera Koppers and Marco K. Koch

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!