31.03.2019 Views

Exercicios resolvidos James Stewart vol. 2 7ª ed - ingles

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

108 D CHAPTER 11 PROBLEMS PLUS<br />

15. If Lis the length of a side of the equilateral triangle, then the area is A= ~L · 4L = 4£ 2 and so £ 2 =faA.<br />

Let r be the radius of one of the circles. When there are n rows of circles, the figure shows that<br />

L<br />

L = v'3r+r+(n-2)(2r)+r+v'3r=r(2n-2+2../3),sor = ( y'3 )'<br />

2 n+ 3-1<br />

The number of circles is 1 + 2 + · · · + n = n( n 2<br />

+ 1 ) , and so the total area of the circles is<br />

n(n + 1) 2 n(n + 1) £ 2<br />

An = 1fT = · 7r 2<br />

2 2 4(n+v'3- 1)<br />

n(n+ 1) 4A/J3 n(n+1) 1rA<br />

= 2 1f 4(n+v'3 - 1) 2 = {n+../3-1) 2 2../3 =><br />

An n(n + 1) 1r<br />

A = (n+../3-1) 2 2.;3<br />

1 + 1/n 1r 1r<br />

= -> -- asn ->oo<br />

[1+(J3-1)/n) 2 2v'3 2../3<br />

r 2r 2r<br />

~-----L------~<br />

17. As in Section 11.9 we have to integrate the function x"' by integrating series. Writing x"' = ( e 1 " "')"' = e"' 1 ""' and using the<br />

Maclaurin series for e"', we have x"' = ( eln "')"' = e"' 1 " "' = E ( x In x) n 1<br />

= E x" (~ x) n . As with power series, we can<br />

n = O n. n=O n.<br />

1<br />

·1 oo 11<br />

x"(ln xt oo 1 1 1<br />

dx = 2: I<br />

integrate this series term-by-term: x"' dx = 2:<br />

1<br />

0 n=O 0 n. n=O n. 0<br />

n(ln x)"- 1 x"+ 1<br />

withu = (lnx)",dv =x" dx,sodu= · dxand v = --: .<br />

x n+ 1<br />

f \"(lnx)"dx = lim /. 1 x"(ln xfdx= lim [x"+l (lnx)"]<br />

} 0 t-o+ t . t-o+ n + 1 t t-o+ it n +<br />

= o- _ n _ t x"(Inxf- 1 dx<br />

n+ 1 } 0<br />

(where !'Hospital's Rule was us<strong>ed</strong> to help evaluate the first limit). Further integration by parts gives<br />

1<br />

x"(lnxf dx. We integrate by parts<br />

- lim ( 1 ___!!:__ 1<br />

x"(1nxf- 1 dx<br />

(<br />

1<br />

x"(ln x)k dx = -~ 1<br />

} 0 n + 1 0<br />

1<br />

x"(ln x)k-<br />

1<br />

dx and, combining these steps, we get<br />

1x"(ln x)"dx = (-1)"n!11 x"dx= (-1)"n! =?<br />

0<br />

(n+1)" 0<br />

· (n+ 1)n+l<br />

1 "' d = ~ ..!_ 1 1 "(In ·)"' d = ~ ..!_ (- 1t n! = ~ (-1)" = ~ (- 1)"-1<br />

X X L... I X X X L... I ( 1 ) +1 , 0 n=O n. 0 . n=O n. n + n n=O L... ( n + 1 " n=l n"<br />

) +1 L... ·<br />

00 x2n+l 1<br />

19. By Table 1 in Section 11. 10, tan- 1 x = E ( - lt- 2<br />

' --for JxJ < 1. In particular, for x = r.;• we<br />

n=O n+ 1 v3<br />

7r ( 1 )<br />

00<br />

(1/../3) 2 "+ 1 00<br />

(1)" i 1<br />

have 6 = tan-1 y'3 = n~O ( - .1t 2n + 1 = n~O ( -1)" 3 y'3 2n + 1' SO<br />

6 00 (-1)" 00 (-1)" ( 00 ' (-1)" ) .<br />

·rr - - - 2 3 - 2 3 1 =><br />

- ../3 n~O (2n + 1)3" - y'3 n~O (2n + 1)3" - y'3 + f1 (2n + 1)3n<br />

00 (-1)" 7r<br />

E =--1.<br />

n=1 (2n + 1)3" 2 y'3<br />

licutcd, or post<strong>ed</strong> to a publicly oeccssiblc website, in whole or in p:tr1.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!