31.03.2019 Views

Exercicios resolvidos James Stewart vol. 2 7ª ed - ingles

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

CHAPTER 15 REVIEW 0 291<br />

l<br />

9. The <strong>vol</strong>ume enclos<strong>ed</strong> by the cone z = ...jx2 + y2 and the plane z = 2 is, in cylindrical coordinates,<br />

V = J~" J~ J: r dz dr dO i= f 0<br />

2<br />

" J~ J: dz dr dO, so the assertion is false.<br />

EXERCISES<br />

1. As shown in the_contour map, we divideR into 9 equally siz<strong>ed</strong> subsquares, each with area b.A = 1. Then we approximate<br />

ffn f(x, y) dA by a Riemann sum with m = n = 3 and the sample points the upper right comers of each square, so<br />

3 3<br />

ffnf(x,y)dA>:::J L: L: f(xi, yj)b.A<br />

i =lj=l<br />

= b.A [!(1, 1) + /(1, 2) + /(1, 3) + !(2, 1) + !(2, 2) + f(2, 3) + !(3, 1) + !(3, 2) + !(3, 3)]<br />

Using the contour lines to estimate the function values, we have<br />

ffnf(x,y) dA >:::! 1(2.7 + 4.7 + 8.0 + 4.7 + 6.7 + 10.0 + 6.7 + 8.6 + 11 .9] ~ 64.0<br />

3. f 1<br />

2<br />

J~ (y + 2xeY) dx dy = J? [xy + x 2 e 11 ] ::~ dy = f 1<br />

2 (2y + 4eY) dy = [y 2 + 4eY] ~<br />

= 4 + 4e 2 - 1 - 4e = 4e 2 - 4e + 3<br />

7. J; J; J0~ ysinx.dzdy dx = f 0<br />

" J; [(ysinx)zJ::F dydx·= f 0<br />

" f 0<br />

1<br />

y ...jl- y 2 sinxdydx<br />

= f 0<br />

" [- ~ (1- y 2 ) 3 1 2 sinx)·u:l dx = f 0<br />

" ~ sin x dx = -~ cosx]~ = ~<br />

. . y~<br />

9. The regi?n R is more easily d~sc rib<strong>ed</strong> by polar coordinates: R = { ( r, 0) I 2 s; r s; 4, 0 s; 8. s; 71"}. Thus<br />

ffn f(x, y) dA = fo" f 2<br />

4<br />

f (rcosO, r sinO) rdrdO.<br />

11.<br />

Th . h . . b fTr / 2 r•in 20 d dO .<br />

e reg1on w ose area IS g.tven y Jo Jo r r IS<br />

· { ( r, 0) I 0 s; 0 s; %, 0 s; r s; sill 20}, which is th~ region contain<strong>ed</strong> in the<br />

loop in the first quadrant of the four-leav<strong>ed</strong> rose r =sin 28 .<br />

13.<br />

./~ J: 1 cos(y 2 ) dy dx = J; g cos(y 2 ) dx dy<br />

= f 0<br />

1<br />

cos(y 2 ) [ x] ::~ dy = J 0<br />

1<br />

y cos(y 2 ) dy<br />

X<br />

® 2012 Cengogc Le:uning. All Rights Reserv<strong>ed</strong>. May not be scann<strong>ed</strong>, copi<strong>ed</strong>. orduplic:u<strong>ed</strong>, or post<strong>ed</strong> to • publicly accessible website, in whole or in pan.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!