31.03.2019 Views

Exercicios resolvidos James Stewart vol. 2 7ª ed - ingles

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

314 0 CHAPTER 16 VECTOR CALCULUS<br />

9. fc y 3 dx- x 3 dy = ffv [:., (-x 3 )- :U (y 3 ) ] dA = ff 0 (- 3x 2 - 3y 2 ) dA = J:"" J:(-3r 2 ) rdrdO<br />

= - 3 J:" dO ..r: r 3 dr = -3(27!)(4) = - 2471"<br />

11. F (x, y) = (y cosx - xysinx, xy + xcos x) and the region D enclos<strong>ed</strong> by Cis given by<br />

{(x, y) I 0 ~ x ~ 2, 0 ~ y ~ 4- 2x}. Cis travers<strong>ed</strong> clockwise, so-C gives the positive orientation.<br />

fc F · dr = - J_ 0 (ycosx- xys.inx)dx + (x~ + xcosx) dy = -<br />

ffv [ :., (xy + xcosx) - :Y (ycosx- xysinx)] dA<br />

=- ffv(Y - xsin x + cosx -: cosx + xsin x)dA = - J 0<br />

2<br />

.{0<br />

4<br />

-<br />

2<br />

:r ydydx<br />

=- f 2 [ ly 2 ] v= 4 - 2 "' dx =- f 2 1(4 - 2x) 2 dx - - f 2 (B - Bx + 2x 2 ) dx- - (Bx- 4x 2 + ~x 3 ) 2<br />

Jo 2 v=O Jo 2 - Jo - a o<br />

= - (16 - 16 + 1 : - o) = - 1 6<br />

3<br />

13. F (x, y) = (y- cosy, x sin y) and the region D enclos<strong>ed</strong> by Cis the disk with radius 2 center<strong>ed</strong> at (3, -4).<br />

C is travers<strong>ed</strong> clockwise, so -C gives the positive orientation .<br />

.f 0<br />

F · dr = - J_ 0<br />

(y - cosy)dx + (xsiny) dy = - JJ 0<br />

[ :., (xsiny)- :u (y- cosy)] dA<br />

= - ffv(siny - 1 - sin y) dA = ffv dA = area of D .= 7r(2? = 47r<br />

15. Here C = C1 + C2 where<br />

01 can be parametriz<strong>ed</strong> as X = t, y = 1, - 1 ~ t ~ 1, and<br />

y<br />

C2 isgivenbyx=-t, y=2 - t 2 , - 1 ~t~ l.<br />

Then the line integral is<br />

. 1<br />

f y 2 e"' dx + x 2 ev dy = J_ 1<br />

[1· et + t 2 e · 0] dt<br />

~~ .<br />

+ J~ 1 [(2- t2 ? e-t( - 1) + (- t) 2 e 2 - t· (- 2t)] dt<br />

= J~ 1 [et - (2 - t 2 ) 2 e- t - 2t 3 e 2 2<br />

-t ] dt =-Be+ 4Be- 1<br />

-I 0<br />

X<br />

according to a CAS. The double integral is<br />

!<br />

. r (aQ aP) ; ·1 r2_,2 .<br />

. J D ax - 8y dA = - 111 (2xeY - 2ye"') dy dx = - Be + 4Be- 1 ' verifying Green's Theorem in this case.<br />

17. By Green's Theorem, W = fc F · dr = fc x(x + y) dx + xy 2 dy = J( 0<br />

(y 2 - x) dA where C is the path describ<strong>ed</strong> in the<br />

question and D is the triangle hound<strong>ed</strong> by C . So<br />

W = J 01<br />

J;-"'(y 2 - x) dy dx = f 0<br />

1<br />

[ty 3 - xy]~ = ~-"' dx = J; (i(1 - x) 3 - x(1 - x)) dx<br />

• = [- f.I ( 1 - x) 4 - ~ x 2 + ~ x 3 ] ~ = (- ~ + ft ) - (- f2) = - 1<br />

1 2<br />

19. Let C1 be the arch of the cycloid from (0, 0) to (27r, 0), which corresponds to 0 ~ t ~ 271", and let C2 be the segment from<br />

(271", 0) to (0, 0), so 02 is given by X = 271"..:. t, y = 0, 0 ~ t :::; 271". Then c = cl u 02 is travers<strong>ed</strong> clockwise, so - C is<br />

orient<strong>ed</strong> positively. Thus -C encloses the area under one arch of the cycloid and from (5) we have<br />

A = - f_ 0<br />

y dx = .{ 0 1<br />

y dx + f . 0 2<br />

y dx = f~" (1 -cos t)(l - cost) dt + f~" 0 (- dt)<br />

= J~" (1 - 2 cost+ cos 2 t) dt + 0 = (t- 2 sin t + ~t + ~sin 2t] ~" = 371"<br />

© 2012 Cengage Learning. All Rights Rcser\'<strong>ed</strong>. May nol be scnnnctl, copi<strong>ed</strong>, orduplicol<strong>ed</strong>, or post«! too publicly occessible website, in wbole or in part.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!