31.03.2019 Views

Exercicios resolvidos James Stewart vol. 2 7ª ed - ingles

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

82 0 CHAPTER 11 INFINITE SEQUENCES AND SERIES<br />

x 3 x 5 x 1 (0.2? (0.2) 5 (0.2) 7<br />

33 By Example 7 arctan x = x - - + - - - + · · · so arctan 0 2 = 0 2 - --+ --- --+ ...<br />

. ' 3 57' .. 3 5 7 .<br />

Th . . I . 'f t1 1 · (0.2) 7<br />

e senes 1s a ternatmg, so 1 we use 1ree terms, t 1e error ts at most - - ~ 0.000 002.<br />

7<br />

(0 2? (0 2?<br />

Thus, to five decimal places, arctan0.2 ~ 0.2- - ·3-<br />

+ -·5-<br />

~ 0.197 40.<br />

2 , 1 2<br />

00<br />

(- 1)"2n(2n- 1)x 2 "<br />

00<br />

(-1t2nx 2 "'<br />

00<br />

(- 1)"x 2 "+2<br />

X Jo (x) + XJo(X) +X Jo(x) = n~l 22n(n!)2 + 1 ~ 1<br />

22"(n!)2 + n~O 22" (n!)2<br />

00<br />

(- 1)"2n(2n-1)x 2 " oo (- 1)"2nx 2 '' oo (- 1t- 1 x 2 "<br />

= n~l 2 2 "(n!) 2 + ,~1 2 2 "(n!J2 + ,~1 22 n- 2 [(n- 1)!] 2<br />

_<br />

00<br />

(- 1)"2n(2n-1)x 2 "<br />

00<br />

(- 1t2nx 2 "<br />

00<br />

(-1)"(-1)- 1 2 2 n 2 x 2 "<br />

- r~l 2 2 "(nl)2 + n~l 2 2 "(n!)2 + ,~1 2 2 "(n!)2<br />

= ~ (- 1 )" [2n(2n - 1) + 2n - 2 2 n 2 ] x2"<br />

n~l 2 2 "(n!)2 ,<br />

= ~ (- 1 )" [4n 2 - 2n + 2n- 4n 2 ] 2n = 0<br />

L- 22" ( 1)2 X<br />

n=l n.<br />

Since 16<br />

.i 28<br />

~ 0.000062, it follows from The Alternating Series Estimation Theorem that, correct to three decimal places,<br />

J 0<br />

1<br />

Jo (x) dx ~ 1 - 1 ; + 3 ~ 0 ~ 0.920.<br />

00 Xn I 00 nxn- l 00 Xn-1<br />

37. (a) f(x) = n~O nf ::} f (x) = •~1 ~ = •~1 (n- 1)!<br />

oo x.,."<br />

I: - 1<br />

= f(x)<br />

n = O n<br />

(b) By Theorem 9.4.2, the only solution to the differential equation df(x)/d.'C = f(:c) is f(x) = Ke", but f(O) = 1, so<br />

K = 1 and f(x) = e".<br />

Or: We could solve the equation df(x)/ dx = f(x.) as a separable differential equation.<br />

n I I I n+l 21 . ( ) 2 .<br />

39. If a,.. = X 2' then by the Ratio Test, lim an+ I = lim (X )2 . ~ = lxl lim ....2::_1 = lx l < 1 for<br />

n - n.-oo an n-oo n + 1 xn n----+oo n +<br />

convergence, so R = 1. When x = ± 1, f I x: I = f ~which is a convergentp-series (p = 2 > 1), so the interval of<br />

n = l n " =1 n<br />

convergence for f is [-1, 1]. By Theorem 2, the radii of convergence off' and f" are both 1, so we ne<strong>ed</strong> only check the<br />

00 x" 00 nxn- 1 00 x"<br />

endpoints. f(x) = I; 2 => . f'(x ) = I: - - 2 - = I; --,and this series diverges for x = 1 (harmonic series)<br />

n=l n n=l n n=O n + 1<br />

@ 2012 Cengage Lc:tminiJ. All Rights Reserv<strong>ed</strong>. May not be sc:~.Mcd, copi<strong>ed</strong>, or duplicat<strong>ed</strong>, or post<strong>ed</strong> w n publicly accessible wcbsile, in whole or in part.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!