31.03.2019 Views

Exercicios resolvidos James Stewart vol. 2 7ª ed - ingles

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

SECTION 17.2 NONHOMOGENEOUS LINEAR EQUATIONS D 349<br />

.Note: Solving Equations (7) and (9) in The Mettiod of Variation of Parameters gives<br />

and<br />

We will use these equations rather than resolving the system in each of the remaining exercises in this section.<br />

19. (a) Here4r 2 + 1 = 0 => r = ±tiand Yc(x) = Clcos(tx) + czsin(~x). Wetryaparticularsolution ofthe form<br />

Yv(x) = Acosx + Bsinx =><br />

y~ = -Asinx + Bcosx and v;: = - Acosx - Bsin x. Then the equatio~<br />

4y" + y = cosx becomes 4( - Acosx- Bsinx) + (Acosx + Bsinx) = cosx or<br />

-3Acosx- 3Bsinx = cosx => A= - 1, B = 0. Thus, Yv(x) = - % cosx and the general solution is<br />

(b) From (a) we know that Yc(x) = c1 cos~+ cz sin~· Setting Yl =cos~. Yz = sin~, we have<br />

I cosxcos~ 1 "' "'1 ·2x "'<br />

andu 2 =<br />

1<br />

= 2 cos (2 · 2 )cos 2 = 2 (1 -2sill 2 )cos 2 . Then<br />

4 ·2<br />

( ) J (} • X 2 X • "') dx X + 2 3 Z<br />

U 1<br />

d<br />

X = 2 Sill 2 - COS 2 Sill 2 = - COS 2<br />

'j COS 2 an<br />

U2 () X =<br />

l x · 2x<br />

J( x) d · :r. 2 · 3x Tl<br />

2 COS 2 - Sill 2 COS 2<br />

X = SID 2 - ~ SID 2 . lUS<br />

yp(x) = (-cos~ + ~ cos 3 ~)cos~ + (s in~ - i sin 3 ~)sin~ = - ( cos 2 ~ - sin 2 ~) + j ( cos 4 ~ - sin 4 ~)<br />

= - cos {2 · ~) + i ( cos 2 ~ + sin 2 ~ ) ( cos 2 ~ - sin 2 ~ ) = -cos x + j cos x = - i cos x<br />

and the general solution is y(x) = Yc(x) + y 1 ,(x) = c1 c os~ . + Cz sin~- t cos x.<br />

21. (a) r 2 - 2r + 1 = (r -1) 2 = 0 => r· = 1, S? the complementary solution is Yc(x) = c1e'" + czxex. A particular solution<br />

is of the form Yv(x) = Ae 2 "'. Thus 4Ae 2 "'- 4Ae 2 "' + Ae 2 "' = e 2 "' => Ae 2 "' = e 2 :r: => A= 1 => Yv(x) = e 2 "'.<br />

So a general solution is y(x) = Yc(x) + Yv(x) = c1ex + c2xe"' + e 2 "'.<br />

(b) From (a), Yc(x) = c1e"' + czxex, so set Yl = ex, Yz = xex. Then, Y1Y~ - YzY~ = e 2 "' (1 + x) - xe 2 "' = e 2 "' and so<br />

u~ = - xe"' => u1 (x) = - J xe:r: dx = - (x - 1)e"' [by parts] and u~ = e"' => u2(x) = J e"' dx = e"'. Hence<br />

yp (x ) = (1- x)e 2 "' + xe 2 "' = e 2 "' and the general solution is y(x) = Yc.(x) + yp(x) = c 1 e"' + czxe"' + e 2 "'.<br />

23. As in Example 5, Yc(x) = c1 sin x + cz cosx, so set Y1 = sinx, Yz = cos x . Then Y1Y~ - YzYi =-sin 2 x- cos 2 x = - 1,<br />

so ui =<br />

sec 2 x cosx<br />

_ 1<br />

= secx => ul(x) = J sccxdx =ln(secx + tan x)for. O

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!