31.03.2019 Views

Exercicios resolvidos James Stewart vol. 2 7ª ed - ingles

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

SECTION 16.4 GREEN'S THEOREM 0 315<br />

21. (a) Using Equation 16.2.8, we write parametric equations of the lin_e segment as x = (1 - t)x1 + tx2, y = (1- t)y1 + ty 2 ,<br />

0 ~ t ~ 1. Then dx = (x2- xl) dt and dy = (y2- yl) dt, so<br />

1<br />

fc x dy- y dx = f 0 [(1 - t)x1 + tx2](y2- Yl) dt + [(1 - t)y1 + ty2](x2- x1) dt<br />

= J; (x1(Y2 - Yl) - y1(x2- xl) + t((y2- Y1)(x2- x1)-:- (x2 - x1)(y2- Y1)]) dt<br />

1<br />

= f 0 (x1y2- x2yl) dt = x~y2- X2Y1<br />

(b) We apply Green's Theorem to the path C = C1 U C2 U · · · U Cn, where Ci is the line segment that joins (xi , Yi) to<br />

(xi+l,Yi+l) fori= 1, 2, ..., n -1, and Gn is the linesegmentthatjoins (x,.,yn) to (xl,Yl). From (5),<br />

~ J~ x dy - y dx = JJ 0<br />

dA, where D is tite polygon bound<strong>ed</strong> by C. Therefore<br />

area of polygon= A( D)= ffv dA = ~ J~ xdy- ydx<br />

= ~ (J~ 1 x dy- ydx + fc 2<br />

xdy - ydx + .... + J~n-l xdy- ydx +fen xdy- ydx)<br />

To evaluate these integrals we use the formula from (a) to get<br />

A(D) = ~[(x1y2- X2Yl) + (X2Y3 - XaY2) + ' · · + (Xn-;-lYn- XnYn- 1) + (XnYl - XlYn)].<br />

(c) A = ~ [(0 · 1 - 2 · 0) + (2 · 3 - 1 · 1) + (1 · 2 - 0 · 3) + (0 · 1 - (-1) · 2) + ( ~ 1 · 0- 0 · 1)]<br />

= Ho+5+2+2) = ~<br />

23. We orient the quarter-circular region as shown in the figure.<br />

A = {7ra 2 sox = 1l'a! / 2<br />

fc x 2 dy and y = - 1ra! 12<br />

fc y 2 dx.<br />

y<br />

a<br />

Here c = c l + c2 + Cs where cl: X = t, y = 0, 0 ~ ·t ~ a;<br />

C2: x = a cost, y =a sin t, 0 ~ t. ~ ~;and<br />

c3: X = 0, y = a - t, 0 ~ t ~ a. Then<br />

fcx 2 dy = fc, x 2 dy + fc 2<br />

x 2 dy +.fc 3<br />

x 2 dy = foa Odt + J 12 0 " (acost) 2 (acost) dt + J; Odt<br />

= J~"/ 2 a 3 cos 3 tdt = a 3 J 0<br />

"/\1- sin 2 t) costdt = a 3 [sint -.i sin 3 t]; 12 = ~a~<br />

_ 1 J 2<br />

4a<br />

so x = 7ra2 /2 Jc x dy = 311'.<br />

c.<br />

a<br />

X<br />

fcy 2 dx = fc, y 2 dx + )~ 2 Y2 dx + fc 3<br />

Y 2 dx = foa 0 dt + f 12 " 0<br />

(a sin t) 2 (- a sin t) dt + Ja 0<br />

0 dt<br />

= J 0 " 12 (- a 3 sin 3 t) dt = - a 3 J 0 " 1 \ 1 - cos 2 t) sin tdt = -a 3 [ ~ cos 3 t- cos t]; 12 = - ~a 3 ,<br />

so 'ii = - 1l'a!/ 2<br />

£y2 dx = ~;.Thus (x,y) = ( ::. ::)·<br />

25. By Green's Theorem, - ~pfcy 3 dx = - kp J.f'v( - 3y 2 ) dA = ffv y 2 pdA = I ., and<br />

tPfcx 3 dy = ~p ff 0 (3x 2 ) dA = ffv x 2 pdA = Iu .<br />

27. As in Example 5, let C' be a counterclockwise-orient<strong>ed</strong> circle with center the origin and radius a, where a is chosen to<br />

be small enough so that C' lies inside C, and D the region bound<strong>ed</strong> by C and C'. Here<br />

=><br />

EJP = 2x(x 2 + y 2 ) 2 . - 2xy · 2(x 2 + y 2 ) · 2y = 2x 3 - 6x~ 2 and<br />

oy (x2 + y2)4 (x2 + y2)3<br />

® 2012 Cc:nsugc: Lcnrning. All Rights Rcscn-<strong>ed</strong>. May nol be sciUUlCd., copi<strong>ed</strong>, or dupHc::u<strong>ed</strong>, or post<strong>ed</strong> to 3 pubJicJy ncccs.~ibl e '"'cbsite, in whole or in pnl1~

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!