31.03.2019 Views

Exercicios resolvidos James Stewart vol. 2 7ª ed - ingles

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

SECTION 17.4 SERIES SOLUTIONS 0 353<br />

~ ~ ~<br />

5. Let y (x) = I: c.,x" '* y' (x) = I: nenx"- 1 and y" (x) = I: (n + 2){n + l)cn+2X". The differential equation<br />

n = O n=l n =O<br />

00 . 00 00 00<br />

becomes L: (n + 2){n + 1)cn+2x" + x I: nc.,.x"- 1 + L.: CnX 11 = 0 or L.: [(n + 2){n + 1)cn+2 + nen + en]x" = 0<br />

n=O n=l n = O n=O<br />

[since n~1 nenx" = n~O ncnx"] . Equating coefficients gives (n + 2)(n + 1)Cn+2 + (n + 1)Cn = 0, thus the<br />

. I . . - (n + l )c,. Cn 0 1 2 Th th<br />

recurs1onreat1ontscn+2= (n+ 2<br />

)(n+l) =--n-+- 2<br />

,n=,, , .... en eeven<br />

coe ffi ctents . are gtven . b y c2 = - Co C2 co C4 Co d . 1<br />

2 , C4 = - 4 = 2 . , co= -6 =-~,an m genera,<br />

4<br />

n Co (- 1)"Co . C1 C3 C1 C5 C1<br />

c2n = (-1)<br />

=<br />

• Theoddcoeffi.ctents are C3 = - - , cs = - - = - ,<br />

2 2 1<br />

c7 = - - = - --- ,<br />

2 · 4 · · · · · n n n. 3 5 3 · 5 7 3 · 5 · 7<br />

d<br />

. I ( l )n Cl . (-2)nn!ct Th I . .<br />

an m genera, C2n+l = -<br />

(Z ) = (<br />

3 5 7<br />

2<br />

l )l . e so utton IS<br />

· · ····· n+ 1 n+ .<br />

00 (-1)" ~<br />

00<br />

{-2)n n l<br />

1 {x) = c 0 "' - - x-" + c 1 "' x 2 "+<br />

y<br />

1<br />

n=O L- 2 11 n.<br />

'<br />

n L- =O {2 n + 1)1 ·<br />

00 00 00 00<br />

7. Let y (x) = L.: CnX" :::} y' (x) = I.: ncnx"- 1 = I.: (n + l)Cn+lx".and y" (x) = L.: (n + 2){n + l )c,+2xn. Then<br />

n=O n=l n=O n=O<br />

00 00 00 00<br />

(x-1)y"(x) = L (n+2){n+l )Cn+2Xn+l _ L.: (n+2)(n+l)cn+2X" = L n(n+1)Cn+1x"- I.: (n+2)(n+l )cr•+2x".<br />

n = O n=O n =l n =O<br />

DO 00<br />

Since L.: n(n + 1)cn+1x" = L.: n(n + 1)Cn+J.'t", the differential equation becomes<br />

n = l<br />

n=O<br />

DO 00 00<br />

L n(n + l)Cn+lX"- L.: (n + 2)(n + 1)Cn+2X" + 2: (n + 1)Cn+!X" = 0 :::}<br />

n=O n=O n =D<br />

00 00<br />

L: [n(n + 1)Cn+l - (n + 2)(n + l )Cn+2 + (n + 1)cn+1]x" = 0 or 2: [(n + 1) 2 cn+I - (n + 2)(n + 1)Cn+2]x" = 0.<br />

u=O<br />

Equating coefficients gives (n + 1) 2 c,,+I - (n + 2)(n + 1)cn+2 = 0 for n = 0, 1, 2, .... Then the recursion relation is<br />

n=O<br />

in general en = Ct , n = 1, 2, 3, .... Thus the solution is y(x) =Co + c1 f xn. Note that the solution can be express<strong>ed</strong> as<br />

n<br />

n =1 n<br />

co- c1 ln{l - x) for JxJ < 1.<br />

00 00<br />

9. Let y(x) = 2::.: c .. x".-Then -xy'(x) = - x L.: nc,.xn-I<br />

~ ~<br />

2: nc.,x" =- L.: ncnx",<br />

n=O n=l n= l n =O<br />

~<br />

y"(x) = L.: (n + 2){n + l )cn+2X" , and the equation y"- xy' - y = 0 becomes<br />

n = O<br />

00<br />

L: [(n + 2)(n + 1)Cn+2- nen - en]x" = 0. Thus, the recursio11 relation is<br />

n = O<br />

© 2012 Cengage L

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!