26.12.2012 Views

Medical Applications User Guide (pdf) - Freescale Semiconductor

Medical Applications User Guide (pdf) - Freescale Semiconductor

Medical Applications User Guide (pdf) - Freescale Semiconductor

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

11.2<br />

Circuit for Capacitive<br />

Discharge Defibrillators<br />

In Figure 11-2, a step-up transformer (T2)<br />

drives a half-wave rectifier and charges<br />

the capacitor (C1). The voltage where C1<br />

is charged is determined by a variable<br />

autotransformer (T1) in the primary circuit.<br />

A series resistor (R1) limits the charging<br />

current to protect the circuit components, and<br />

determines the time constant Tao (T = R x C).<br />

Five times the time constant for the circuit is<br />

required to reach 99 percent of a full charge.<br />

The time constant must be less than two<br />

seconds to allow a complete charge in less<br />

than 10 seconds.<br />

11.3<br />

Circuit for Rectangular-<br />

Wave Defibrillators<br />

In a rectangular-wave defibrillator, the<br />

capacitor is discharged through the patient<br />

by turning on a series of silicon-controlled<br />

rectifiers (SCR). When sufficient energy has<br />

been delivered to the patient, a shunt SCR<br />

short circuits the capacitor and terminates<br />

the pulse. This eliminates the long discharge<br />

tail of the waveform. The output may be<br />

controlled by varying either the voltage on the<br />

capacitor or the duration of discharge. Figure<br />

11-3 shows a general diagram of circuit<br />

implementation.<br />

Bipolar defibrillators are more efficient<br />

because they need less energy while<br />

providing the same results as unipolar<br />

defibrillators. A bipolar defibrillator needs just<br />

120 J to discharge. It has the same efficiency<br />

as the 200 J of discharge used by a unipolar<br />

defibrillator.<br />

An ECG unit must be included in the<br />

defibrillator’s system to monitor heart<br />

activity and to control the moment when<br />

the discharge can be applied to the patient.<br />

The electrodes perform both functions,<br />

capturing the patient’s ECG and delivering<br />

a high current.<br />

Defibrillator<br />

Defibrillator<br />

Figure 11-1: Defibrillators General Block Diagram<br />

Syncronization<br />

Circuit<br />

Syncronization<br />

Circuit<br />

Electrodes<br />

Electrodes<br />

Discharge<br />

Circuit<br />

Discharge<br />

Circuit<br />

ECG<br />

Amplifier<br />

ECG<br />

Amplifier<br />

<strong>Freescale</strong> Technology<br />

<strong>Freescale</strong> Technology<br />

Optional<br />

MCU/MPU<br />

Diagnostic and Therapy Devices<br />

Signal<br />

Conditioning<br />

Signal<br />

Conditioning<br />

Unipolar Bipolar<br />

freescale .com/medical 63<br />

Electrical Isolation<br />

Electrical Isolation<br />

Display<br />

Optional<br />

Display<br />

MCU/MPU<br />

Keypad or<br />

Touch Screen<br />

Keypad or<br />

Touch Screen<br />

USB<br />

USB<br />

Wireless<br />

Comm<br />

Wireless<br />

Comm<br />

Power<br />

Management<br />

Power<br />

Management<br />

Figure 10-2: Basic Circuit Diagram for a Capacitive Discharge Defibrillator<br />

Figure 11-2: Basic Circuit Diagram for a Capacitive Discharge Defibrillator<br />

Figure 10-3: 11-3: Block Block Diagram Diagram for for a Rectangular-Wave a Rectangular-Wave Defibrillator Defibrillator<br />

Figure 10-4: Unipolar Defibrillator Waveform<br />

Volts<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

0<br />

0<br />

1<br />

2 4 6 8 10<br />

Time (ms)<br />

12 14 16 18<br />

Charge<br />

Control A<br />

Charge<br />

Circuit A<br />

Charge<br />

Circuit B<br />

Charge<br />

Control B<br />

Capacitor<br />

Bank A<br />

Capacitor<br />

Bank B<br />

Monitor<br />

Circuit<br />

Monitor<br />

Circuit<br />

Figure 11-4: Unipolar and Bipolar Defibrillator Waveforms<br />

Figure 10-5: Bipolar Defibrillator Waveform<br />

Volts<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

0<br />

0<br />

1<br />

5 10 15 20 25<br />

Time (ms)<br />

30 35 40 45

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!