08.02.2013 Views

New Statistical Algorithms for the Analysis of Mass - FU Berlin, FB MI ...

New Statistical Algorithms for the Analysis of Mass - FU Berlin, FB MI ...

New Statistical Algorithms for the Analysis of Mass - FU Berlin, FB MI ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

3.2. INTRODUCTION TO MALDI TOF MS 27<br />

ta =<br />

=<br />

v − v0<br />

a<br />

v − v0<br />

m ·<br />

E · q<br />

=<br />

=<br />

v − v0<br />

m ·<br />

E · e · z<br />

m v − v0<br />

·<br />

z E · e<br />

(3.2.1)<br />

The travelled distance (s) during this time, which is <strong>the</strong> distance to a zero s: Distance<br />

position, measured from <strong>the</strong> initial position (s0) <strong>of</strong> <strong>the</strong> ion is calculated by: s0: Initial position <strong>of</strong> ion, relative to<br />

zero position<br />

s − s0 =<br />

�<br />

vdt<br />

= v0 · t +<br />

E · q<br />

· t2<br />

2 · m<br />

After <strong>the</strong> acceleration through potential V and be<strong>for</strong>e <strong>the</strong> ions eventually hit<br />

<strong>the</strong> detector ((5) in Figure 3.2.2) <strong>the</strong>y travel through <strong>the</strong> drift region (with<br />

length D, (4) in Figure 3.2.2) with kinetic energy UD and drift velocity vD<br />

and with<br />

we get<br />

Ekin = 1<br />

· m · v2<br />

2<br />

UD = q · V = q(E · sa) = 1<br />

2 · m · (vD − v0) 2<br />

This allows <strong>for</strong> <strong>the</strong> calculation <strong>of</strong> <strong>the</strong> drift velocity (vD):<br />

vD = v0 +<br />

� 2 · q · E · sa<br />

and <strong>the</strong>re<strong>for</strong>e we can compute <strong>the</strong> time <strong>the</strong> ions travel through <strong>the</strong> drift region:<br />

tD = D<br />

vD<br />

m<br />

�<br />

m<br />

= D · (<br />

+<br />

2 · q · E · sa<br />

1<br />

)<br />

v0<br />

�<br />

m 1<br />

= D · ( + )<br />

2 · q · V v0<br />

�<br />

m<br />

= D · (<br />

z ·<br />

�<br />

1 1<br />

+ ) (3.2.2)<br />

2 · e · V v0<br />

D: Length <strong>of</strong> drift region<br />

U D: Energy <strong>of</strong> ion in drift region<br />

v D: Drift velocity<br />

Summarized, <strong>the</strong> total time-<strong>of</strong>-flight (TOF) is T OF : Time-<strong>of</strong>-flight<br />

T OF = ta + tD<br />

Of course, this is <strong>the</strong> assumption <strong>for</strong> a perfect world. In practice <strong>the</strong>re are<br />

(at least) two more variables: <strong>the</strong> time between <strong>the</strong> start <strong>of</strong> timing and <strong>the</strong><br />

acceleration <strong>of</strong> <strong>the</strong> ions (t0) and <strong>the</strong> detector response time (td). Including t0: Time <strong>of</strong> ion <strong>for</strong>mation<br />

t d: Detector response time

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!