20.01.2015 Views

Sophie Germain: mathématicienne extraordinaire - Scripps College

Sophie Germain: mathématicienne extraordinaire - Scripps College

Sophie Germain: mathématicienne extraordinaire - Scripps College

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Sophie</strong> <strong>Germain</strong>’s Theorems 55<br />

Claim 5. 1. For relatively prime integers y and z, the expressions y + z and<br />

y p−1 − y p−2 z + y p−3 z 2 + · · · − yz p−2 + z p−1 are relatively prime.<br />

Proof of Claim 5.1.<br />

Suppose r is a prime which divides both y + z and<br />

y p−1 − y p−2 z + y p−3 z 2 + · · · − yz p−2 + z p−1 . Then<br />

y + z ≡ 0 (mod r)<br />

y p−1 − y p−2 z + y p−3 z 2 + · · · − yz p−2 + z p−1 ≡ 0 (mod r).<br />

Thus, z ≡ −y (mod r). Plugging z = −y into the second equation gives us<br />

y p−1 − y p−2 z + y p−3 z 2 + · · · − yz p−2 + z p−1 ≡ py p−1 (mod r).<br />

So py p−1 ≡ (mod r). Then either p ≡ 0 (mod r) or y p−1 ≡ 0 (mod r).<br />

First suppose y p−1 ≡ 0 (mod r). Then y ≡ 0 (mod r). But z ≡ −y (mod r),<br />

so z ≡ 0 (mod r). This implies that r divides z. This is a contradiction since<br />

y and z are relatively prime. Thus r does not divide y p−1 .<br />

Now suppose p ≡ 0 (mod r). Since p is prime, this means p = r. Then<br />

y + z ≡ 0 (mod p)<br />

y p−1 − y p−2 z + y p−3 z 2 + · · · − yz p−2 + z p−1 ≡ 0 (mod p).

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!