20.01.2015 Views

Sophie Germain: mathématicienne extraordinaire - Scripps College

Sophie Germain: mathématicienne extraordinaire - Scripps College

Sophie Germain: mathématicienne extraordinaire - Scripps College

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Sophie</strong> <strong>Germain</strong>’s Theorems 56<br />

So<br />

(y + z)(y p−1 − y p−2 z + y p−3 z 2 + · · · − yz p−2 + z p−1 ) ≡ 0 (mod p)<br />

y p + z p ≡ 0 (mod p)<br />

(−x) p ≡ 0 (mod p).<br />

This implies that p divides x. This is a contradiction since we have assumed<br />

that p does not divide x, y, or z. Thus r ≠ p.<br />

So no prime r can divide p or y p−1 , then it cannot divide both y + z<br />

and y p−1 − y p−2 z + y p−3 z 2 + · · · − yz p−2 + z p−1 .<br />

Therefore y + z and<br />

y p−1 − y p−2 z + y p−3 z 2 + · · · − yz p−2 + z p−1 are relatively prime. □<br />

We return to our proof of <strong>Sophie</strong> <strong>Germain</strong>’s Theorem.<br />

Since y + z and y p−1 − y p−2 z + y p−3 z 2 + · · · − yz p−2 + z p−1 are relatively<br />

prime divisors of a pth power, they are both pth powers.<br />

Similarly, we can factor (−y) p = x p + z p and (−z) p = x p + y p to give us<br />

(−y) p = (x + z)(x p−1 − x p−2 z + x p−3 z 2 + · · · − xz p−2 + z p−1 )<br />

(−z) p = (x + y)(x p−1 − x p−2 y + x p−3 y 2 + · · · − xy p−2 + y p−1 ), respectively,<br />

where each of these factors is a pth power.<br />

Then, there must be non-zero integers a, b, c, α, β, and γ, such that<br />

y + z = a p y p−1 − y p−2 z + y p−3 z 2 + · · · − yz p−2 + z p−1 = α p and x = −aα<br />

x + z = b p x p−1 − x p−2 z + x p−3 z 2 + · · · − xz p−2 + z p−1 = β p and y = −bβ<br />

x + y = c p x p−1 − x p−2 y + x p−3 y 2 + · · · − xy p−2 + y p−1 = γ p and z = −cγ

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!