23.02.2013 Views

Plant basal resistance - Universiteit Utrecht

Plant basal resistance - Universiteit Utrecht

Plant basal resistance - Universiteit Utrecht

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

References<br />

Gianoli E, Niemeyer HM (1997) Characteristics of Hydroxamic Acid Induction in Wheat Triggered by<br />

Aphid Infestation. Journal of Chemical Ecology 23: 2695-2705<br />

Gianoli E, Papp M, Niemeyer HM (1996) Costs and benefits of hydroxamic acids-related <strong>resistance</strong> in<br />

winter wheat against the bird cherry-oat aphid, Rhopalosiphum padi L. Annals of Applied<br />

Biology 129: 83-90<br />

Givovich A, Niemeyer HM (1994) Effect of hydroxamic acids on feeding-behavior and performance of<br />

cereal aphids (Hemiptera, Aphididea) on wheat. European Journal of Entomology 91: 371-<br />

374<br />

Givovich A, Niemeyer HM (1996) Role of hydroxamic acids in the <strong>resistance</strong> of wheat to the Russian<br />

Wheat Aphid, Diuraphis noxia (Mordvilko) (Hom., Aphididae). Journal of Applied Entomology<br />

120: 537-539<br />

Glauser G, Marti G, Villard N, Doyen GA, Wolfender J-L, Turlings TCJ, Erb M (2011) Induction and<br />

detoxification of maize 1,4-benzoxazin-3-ones by insect herbivores. The <strong>Plant</strong> Journal 68:<br />

901-911<br />

Glazebrook J (2005) Contrasting mechanisms of defense against biotrophic and necrotrophic<br />

pathogens. Annual Review of Phytopathology 43: 205-227<br />

Glazebrook J, Rogers EE, Ausubel FM (1997) Use of Arabidopsis for genetic dissection of plant defense<br />

responses. Annual Review of Genetics 31: 547-569<br />

Gomez-Gomez L, Boller T (2000) FLS2: An LRR receptor-like kinase involved in the perception of the<br />

bacterial elicitor flagellin in Arabidopsis. Molecular Cell 5: 1003-1012<br />

González-Lamothe R, Mitchell G, Gattuso M, Diarra M, Malouin F, Bouarab K (2009) <strong>Plant</strong> Antimicrobial<br />

Agents and Their Effects on <strong>Plant</strong> and Human Pathogens. International Journal of Molecular<br />

Sciences 10: 3400-3419<br />

Großkinsky DK, Naseem M, Abdelmohsen UR, Plickert N, Engelke T, Griebel T, Zeier J, Novák O, Strnad<br />

M, Pfeifhofer H, van der Graaff E, Simon U, Roitsch T (2011) Cytokinins Mediate Resistance<br />

against Pseudomonas syringae in Tobacco through Increased Antimicrobial Phytoalexin<br />

Synthesis Independent of Salicylic Acid Signaling. <strong>Plant</strong> Physiology 157: 815-830<br />

Guo M, Tian F, Wamboldt Y, Alfano JR (2009) The Majority of the Type III Effector Inventory of<br />

Pseudomonas syringae pv. tomato DC3000 Can Suppress <strong>Plant</strong> Immunity. Molecular <strong>Plant</strong>-<br />

Microbe Interactions 22: 1069-1080<br />

Gust AA, Brunner F, Nürnberger T (2010) Biotechnological concepts for improving plant innate<br />

immunity. Current Opinion in Biotechnology 21: 204-210<br />

Haas D, Keel C (2003) Regulation of antibiotic production in root-colonizing Pseudomonas spp. and<br />

relevance for biological control of plant disease. Annual Review of Phytopathology 41: 117-<br />

153<br />

Haichar FZ, Marol C, Berge O, Rangel-Castro JI, Prosser JI, Balesdent J, Heulin T, Achouak W (2008)<br />

<strong>Plant</strong> host habitat and root exudates shape soil bacterial community structure. International<br />

Society for Microbial Ecology Journal 2: 1221-1230<br />

Halkier BA, Gershenzon J (2006) Biology and biochemistry of glucosinolates. In Annual Review of <strong>Plant</strong><br />

Biology, Vol 57, pp 303-333<br />

Hamiduzzaman MM, Jakab G, Barnavon L, Neuhaus JM, Mauch-Mani B (2005) beta-Aminobutyric<br />

acid-induced <strong>resistance</strong> against downy mildew in grapevine acts through the potentiation<br />

of callose formation and jasmonic acid signaling. Molecular <strong>Plant</strong>-Microbe Interactions 18:<br />

819-829<br />

Hamilton RH (1964) A corn mutant deficient in 2,4-Dihydroxy-7-Methoxy-1,4-Benzoxazin-3-One with<br />

an altered tolerance of atrazine. Weeds 12: 27-30<br />

Handelsman J, Stabb EV (1996) Biocontrol of soilborne plant pathogens. The <strong>Plant</strong> Cell 8: 1855-1869<br />

Harwood CS, Nichols NN, Kim MK, Ditty JL, Parales RE (1994) Identification of the pcaRKF gene cluster<br />

from Pseudomonas putida: involvement in chemotaxis, biodegradation, and transport of<br />

4-hydroxybenzoate. Journal of Bacteriology 176: 6479-6488<br />

Harwood CS, Rivelli M, Ornston LN (1984) Aromatic acids are chemoattractants for Pseudomonas<br />

putida. Journal of Bacteriololgy 160: 622-628<br />

Heck S, Grau T, Buchala A, Metraux JP, Nawrath C (2003) Genetic evidence that expression of NahG<br />

modifies defence pathways independent of salicylic acid biosynthesis in the Arabidopsis-<br />

Pseudomonas syringae pv. tomato interaction. The <strong>Plant</strong> Journal 36: 342-352<br />

Heil M (2002) Ecological costs of induced <strong>resistance</strong>. Current Opinion in <strong>Plant</strong> Biology 5: 345-350<br />

Heil M (2009) Damaged-self recognition in plant herbivore defence. Trends in <strong>Plant</strong> Science 14: 356-<br />

128

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!