23.02.2013 Views

Plant basal resistance - Universiteit Utrecht

Plant basal resistance - Universiteit Utrecht

Plant basal resistance - Universiteit Utrecht

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

References<br />

Studies in Natural Products Chemistry, Vol Volume 21, Part B. Elsevier, pp 3-122<br />

Michael W (2003) Evolution of secondary metabolites from an ecological and molecular phylogenetic<br />

perspective. Phytochemistry 64: 3-19<br />

Mishina TE, Zeier J (2007) Pathogen-associated molecular pattern recognition rather than development<br />

of tissue necrosis contributes to bacterial induction of systemic acquired <strong>resistance</strong> in<br />

Arabidopsis. The <strong>Plant</strong> Journal 50: 500-513<br />

Mitchell-Olds T, Schmitt J (2006) Genetic mechanisms and evolutionary significance of natural<br />

variation in Arabidopsis. Nature 441: 947-952<br />

Mithoefer A, Boland W (2008) Recognition of herbivory-associated molecular patterns. <strong>Plant</strong><br />

Physiology 146: 825-831<br />

Miya A, Albert P, Shinya T, Desaki Y, Ichimura K, Shirasu K, Narusaka Y, Kawakami N, Kaku H,<br />

Shibuya N (2007) CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling<br />

in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of<br />

America 104: 19613-19618<br />

Miyakoshi M, Shintani M, Terabayashi T, Kai S, Yamane H, Nojiri H (2007) Transcriptome Analysis of<br />

Pseudomonas putida KT2440 Harboring the Completely Sequenced IncP-7 Plasmid pCAR1.<br />

Journal of Bacteriology 189: 6849-6860<br />

Molina L, Ramos C, Duque E, Ronchel MC, Garcıá JM, Wyke L, Ramos JL (2000) Survival of Pseudomonas<br />

putida KT2440 in soil and in the rhizosphere of plants under greenhouse and environmental<br />

conditions. Soil Biology and Biochemistry 32: 315-321<br />

Morant AV, Jorgensen K, Jorgensen C, Paquette SM, Sanchez-Perez R, Moller BL, Bak S (2008) beta-<br />

Glucosidases as detonators of plant chemical defense. Phytochemistry 69: 1795-1813<br />

Mukherjee M, Larrimore KE, Ahmed NJ, Bedick TS, Barghouthi NT, Traw MB, Barth C (2010) Ascorbic<br />

Acid Deficiency in Arabidopsis Induces Constitutive Priming That is Dependent on Hydrogen<br />

Peroxide, Salicylic Acid, and the NPR1 Gene. Molecular <strong>Plant</strong>-Microbe Interactions 23: 340-<br />

351<br />

Mur LAJ, Naylor G, Warner SAJ, Sugars JM, White RF, Draper J (1996) Salicylic acid potentiates<br />

defence gene expression in tissue exhibiting acquired <strong>resistance</strong> to pathogen attack. The<br />

<strong>Plant</strong> Journal 9: 559-571<br />

Mysore KS, Ryu C-M (2004) Nonhost <strong>resistance</strong>: how much do we know? Trends in <strong>Plant</strong> Science 9:<br />

97-104<br />

Nakazawa T (2002) Travels of a Pseudomonas, from Japan around the world. Environmental<br />

Microbiology 4: 782-786<br />

Nelson KE, Weinel C, Paulsen IT, Dodson RJ, Hilbert H, Martins dos Santos VA, Fouts DE, Gill SR, Pop<br />

M, Holmes M, Brinkac L, Beanan M, DeBoy RT, Daugherty S, Kolonay J, Madupu R, Nelson<br />

W, White O, Peterson J, Khouri H, Hance I, Chris Lee P, Holtzapple E, Scanlan D, Tran K,<br />

Moazzez A, Utterback T, Rizzo M, Lee K, Kosack D, Moestl D, Wedler H, Lauber J, Stjepandic<br />

D, Hoheisel J, Straetz M, Heim S, Kiewitz C, Eisen JA, Timmis KN, Dusterhoft A, Tummler B,<br />

Fraser CM (2002) Complete genome sequence and comparative analysis of the metabolically<br />

versatile Pseudomonas putida KT2440. Environmental Microbiology 4: 799-808<br />

Nielsen R (2005) Molecular signatures of natural selection. Annual Review of Genetics 39: 197-218<br />

Niemeyer HM (1988) Hydroxamic acids (4-hydroxy-1,4-benzoxazin-3-ones), defence chemicals in the<br />

gramineae. Phytochemistry 27: 3349-3358<br />

Niemeyer HM (2009) Hydroxamic Acids Derived from 2-Hydroxy-2H-1,4-Benzoxazin-3(4H)-one: Key<br />

Defense Chemicals of Cereals. Journal of Agricultural and Food Chemistry 57: 1677-1696<br />

Niemeyer HM, Perez FJ (1994) Potential of Hydroxamic Acids in the Control of Cereal Pests, Diseases,<br />

and Weeds. In Allelopathy, Vol 582. American Chemical Society, pp 260-270<br />

Nikus J, Jonsson LMV (1999) Tissue localization of β-glucosidase in rye, maize and wheat seedlings.<br />

Physiologia <strong>Plant</strong>arum 107: 373-378<br />

Nomura K, Melotto M, He S-Y (2005) Suppression of host defense in compatible plant–Pseudomonas<br />

syringae interactions. Current Opinion in <strong>Plant</strong> Biology 8: 361-368<br />

Nordborg M, Weigel D (2008) Next-generation genetics in plants. Nature 456: 720-723<br />

Oikawa A, Ishihara A, Iwamura H (2002) Induction of HDMBOA-Glc accumulation and DIMBOA-Glc<br />

4-O-methyltransferase by jasmonic acid in poaceous plants. Phytochemistry 61: 331-337<br />

Oikawa A, Ishihara A, Tanaka C, Mori N, Tsuda M, Iwamura H (2004) Accumulation of HDMBOA-Glc<br />

is induced by biotic stresses prior to the release of MBOA in maize leaves. Phytochemistry<br />

65: 2995-3001<br />

132

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!