28.02.2013 Views

Practical Ship Hydrodynamics

Practical Ship Hydrodynamics

Practical Ship Hydrodynamics

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Numerical example for BEM 257<br />

At the free surface ⊲z D total ⊳ the pressure is constant, namely atmospheric<br />

pressure ⊲p D p0⊳:<br />

D⊲p p0⊳<br />

Dt<br />

D<br />

∂⊲p p0⊳<br />

∂t<br />

C ⊲r total r⊳⊲p p0⊳ D 0<br />

Bernoulli’s equation gives at the free surface ⊲z D total ⊳ the dynamic boundary<br />

condition:<br />

total<br />

t<br />

1<br />

C<br />

2 ⊲r total ⊳ 2 C g total C p D 1<br />

2 V2 C p0<br />

The kinematic boundary condition gives at z D total :<br />

D total<br />

Dt<br />

D ∂<br />

∂t<br />

total C ⊲r total r⊳ total D total<br />

z<br />

Combining the above three equations yields at z D total :<br />

total<br />

tt<br />

C 2r total r total<br />

t<br />

Cr total r⊲ 1<br />

2r total ⊳ 2 ⊳ C g total<br />

z D 0<br />

Formulating this condition in ⊲0⊳ and ⊲1⊳ and linearizing with regard to<br />

instationary terms gives at z D total :<br />

⊲1⊳<br />

tt C 2r ⊲0⊳ r ⊲1⊳<br />

t Cr ⊲0⊳ r⊲ 1<br />

2⊲r ⊲0⊳ ⊳ 2 Cr ⊲1⊳ r ⊲0⊳ ⊳<br />

Cr ⊲1⊳ r⊲ 1<br />

2⊲r ⊲0⊳ ⊳ 2 ⊳ C g ⊲0⊳ ⊲1⊳<br />

z C g z D 0<br />

We develop this equation in a linearized Taylor expansion around ⊲0⊳ using the<br />

abbreviations Ea, Ea g ,andBfor steady flow contributions. This yields at z D ⊲0⊳ :<br />

⊲1⊳<br />

tt C 2r ⊲0⊳ r ⊲1⊳<br />

t Cr ⊲0⊳ Ea g Cr ⊲0⊳ ⊲r ⊲0⊳ r⊳r ⊲1⊳<br />

Cr ⊲1⊳ ⊲Ea CEa g ⊳ C Ba g<br />

3 ⊲1⊳ D 0<br />

The steady boundary condition can be subtracted, yielding:<br />

⊲1⊳<br />

tt C 2r ⊲0⊳ r ⊲1⊳<br />

t Cr ⊲0⊳ ⊲r ⊲0⊳ r⊳r ⊲1⊳ Cr ⊲1⊳ ⊲Ea CEa g ⊳ C Ba g<br />

3 ⊲1⊳ D 0<br />

⊲1⊳ will now be substituted by an expression depending solely on ⊲0⊳ , ⊲0⊳ ⊲ ⊲0⊳ ⊳<br />

and ⊲1⊳ ⊲ ⊲0⊳ ⊳. To this end, Bernoulli’s equation is also developed in a Taylor<br />

expansion. Bernoulli’s equation yields at z D ⊲0⊳ C ⊲1⊳ :<br />

total<br />

t<br />

1 C 2⊲r total ⊳ 2 C g total D 1<br />

2V2 A truncated Taylor expansion gives at z D ⊲0⊳ :<br />

⊲1⊳<br />

t<br />

C 1<br />

2 ⊲r total ⊳ 2 C g<br />

⊲0⊳ 1<br />

2V2 C ⊲r total r total<br />

z C g⊳ ⊲1⊳ D 0<br />

Formulating this condition in ⊲0⊳ and ⊲1⊳ , linearizing with regard to instationary<br />

terms and subtracting the steady boundary condition yields:<br />

⊲1⊳<br />

t Cr ⊲0⊳ r ⊲1⊳ C a g<br />

3 ⊲1⊳ D 0

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!