03.03.2013 Views

Atomic Layer Deposition (ALD): An Enabler for Nanoscience and ...

Atomic Layer Deposition (ALD): An Enabler for Nanoscience and ...

Atomic Layer Deposition (ALD): An Enabler for Nanoscience and ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Atomic</strong> <strong>Layer</strong> <strong>Deposition</strong> (<strong>ALD</strong>): <strong>An</strong> <strong>Enabler</strong><br />

<strong>for</strong> <strong>Nanoscience</strong> <strong>and</strong> Nanotechnology<br />

Harvard University<br />

Roy G. Gordon<br />

Harvard University<br />

Cambridge, MA


Definitions of Chemical Vapor <strong>Deposition</strong> (CVD)<br />

<strong>and</strong> <strong>Atomic</strong> <strong>Layer</strong> <strong>Deposition</strong> (<strong>ALD</strong>)<br />

Structures <strong>and</strong> materials made by <strong>ALD</strong><br />

Properties needed <strong>for</strong> CVD <strong>and</strong> <strong>ALD</strong> precursors:<br />

Volatility, Stability, Reactivity<br />

How to design those properties into precursors:<br />

metal amidinates<br />

High-k insulators: La 2 O 3 , LaAlO 3<br />

Harvard University<br />

Outline


Chemical Vapor <strong>Deposition</strong> (CVD)<br />

One or more gases or vapors react to <strong>for</strong>m a solid product<br />

precursor<br />

vapors<br />

substrate<br />

Solid product can be a<br />

film<br />

particle<br />

nanowire<br />

nanotube<br />

Harvard University<br />

Heater<br />

film<br />

byproduct<br />

vapors<br />

Reaction started by<br />

heat<br />

mixing 2 vapors<br />

plasma


<strong>Atomic</strong> <strong>Layer</strong> <strong>Deposition</strong> (<strong>ALD</strong>)<br />

Sequential, self-limiting surface reactions make alternating layers:<br />

Precursor 1<br />

Precursor 2<br />

Benefits of <strong>ALD</strong>:<br />

• <strong>Atomic</strong> level of control over film composition<br />

⇒nanolaminates <strong>and</strong> multi-component materials<br />

• Uni<strong>for</strong>m thickness over large areas <strong>and</strong> inside narrow holes<br />

• Very smooth surfaces (<strong>for</strong> amorphous films)<br />

• High density <strong>and</strong> few defects or pinholes<br />

• Low deposition temperatures (<strong>for</strong> very reactive precursors)<br />

• Pure films (<strong>for</strong> suitably reactive precursors)<br />

Harvard University<br />

Heated area =<br />

deposition zone


ML 2<br />

H 2O<br />

Typical <strong>ALD</strong> Reaction <strong>for</strong> Oxides<br />

ML 2<br />

ML 2<br />

OH OH OH<br />

ML<br />

O<br />

H 2O<br />

ML<br />

O<br />

Harvard University<br />

H 2O<br />

ML<br />

O<br />

ML<br />

O<br />

MOH<br />

O<br />

HL<br />

ML<br />

O<br />

HL<br />

MOH<br />

O<br />

HL<br />

ML<br />

O<br />

HL<br />

MOH<br />

O<br />

HL<br />

HL


Definitions of Chemical Vapor <strong>Deposition</strong> (CVD)<br />

<strong>and</strong> <strong>Atomic</strong> <strong>Layer</strong> <strong>Deposition</strong> (<strong>ALD</strong>)<br />

Structures <strong>and</strong> materials made by <strong>ALD</strong><br />

Properties needed <strong>for</strong> CVD <strong>and</strong> <strong>ALD</strong> precursors:<br />

Volatility, Stability, Reactivity<br />

How to design those properties into precursors:<br />

metal amidinates<br />

High-k insulators: La 2 O 3 , LaAlO 3<br />

Harvard University<br />

Outline


Lining <strong>and</strong> Filling Holes by <strong>ALD</strong><br />

Harvard University<br />

4 cycles 12 cycles


Ion Milling<br />

Ion Milling + <strong>ALD</strong><br />

Harvard University<br />

Nanopores by <strong>ALD</strong><br />

May be used <strong>for</strong> rapid sequencing of DNA


Coatings on the Outside of Particles<br />

<strong>ALD</strong> AlN coating<br />

ZnS particles<br />

Used in electroluminescent back-lights <strong>for</strong> displays<br />

in cell-phones <strong>and</strong> many other devices.<br />

Harvard University


Harvard University<br />

Photonic Crystals by <strong>ALD</strong><br />

1) Form crystals of silica spheres.<br />

2) <strong>ALD</strong> of Ta 2 O 5 between the spheres<br />

3) Convert to Ta 3 N 5 in NH 3<br />

4) Dissolve the silica spheres in HF<br />

f<br />

500nm<br />

The resulting photonic crystals may be able to control light,<br />

the way semiconductors control electron transport.


<strong>ALD</strong> ruthenium<br />

on aluminum oxide<br />

diameters ~1 to 2 nm,<br />

~ 5 to 10 atoms across<br />

nucleation density is<br />

~ 20 x higher than previous<br />

metal nanocrystals<br />

may be applied to<br />

flash memories<br />

Harvard University<br />

Nano-Dots by <strong>ALD</strong><br />

40 nm scale bar; 10 nm in insert


after 500 cycles of Al 2 O 3<br />

Harvard University<br />

Nanobeads by <strong>ALD</strong><br />

Growth on Single-walled Carbon Nanotubes<br />

after 500 cycles of iron


Alumina Nanotubes on Carbon Nanotubes<br />

7 nm diameter<br />

Harvard University<br />

21 nm diameter<br />

100 nm diameter


Nano-Coaxial Cable or Transistor<br />

Conducting tungsten nitride (WN) concentrically around<br />

insulating aluminum oxide (Al 2 O 3 ) concentrically around<br />

a conducting carbon nanotube.<br />

WN<br />

Harvard University<br />

Al 2 O 3<br />

Carbon Al 2 O 3 WN


Elements included in <strong>ALD</strong> Materials<br />

Green = Element included in at least 1 <strong>ALD</strong> Material<br />

Red = Element not included in any <strong>ALD</strong> Material<br />

H He<br />

Li Be B C N O F Ne<br />

Na Mg Al Si P S Cl Ar<br />

K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr<br />

Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe<br />

Cs Ba La Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn<br />

Fr Ra Ac<br />

Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu<br />

Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr<br />

Harvard University


Harvard University<br />

Oxides Made by <strong>ALD</strong><br />

Green = <strong>ALD</strong> process known <strong>for</strong> an Oxide of the Element<br />

Red = no process known <strong>for</strong> <strong>ALD</strong> of any Oxide of the Element<br />

H He<br />

Li Be B C N O F Ne<br />

Na Mg Al Si P S Cl Ar<br />

K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr<br />

Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe<br />

Cs Ba La Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn<br />

Fr Ra Ac<br />

Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu<br />

Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr


Pure Elements Made by <strong>ALD</strong><br />

Green = <strong>ALD</strong> processes known <strong>for</strong> 16 Pure Elements<br />

Red = no process known <strong>for</strong> <strong>ALD</strong> of the Element<br />

H He<br />

Li Be B C N O F Ne<br />

Na Mg Al Si P S Cl Ar<br />

K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr<br />

Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe<br />

Cs Ba La Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn<br />

Fr Ra Ac<br />

Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu<br />

Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr<br />

Harvard University


Harvard University<br />

Nitrides Made by <strong>ALD</strong><br />

Green = <strong>ALD</strong> processes known <strong>for</strong> a Nitride of the Element<br />

Red = no process known <strong>for</strong> <strong>ALD</strong> of a Nitride of the Element<br />

H He<br />

Li Be B C N O F Ne<br />

Na Mg Al Si P S Cl Ar<br />

K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr<br />

Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe<br />

Cs Ba La Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn<br />

Fr Ra Ac<br />

Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu<br />

Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr


Harvard University<br />

Sulfides Made by <strong>ALD</strong><br />

Green = <strong>ALD</strong> processes known <strong>for</strong> a Sulfide of the Element<br />

Red = no process known <strong>for</strong> <strong>ALD</strong> of a Sulfide of the Element<br />

H He<br />

Li Be B C N O F Ne<br />

Na Mg Al Si P S Cl Ar<br />

K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr<br />

Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe<br />

Cs Ba La Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn<br />

Fr Ra Ac<br />

Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu<br />

Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr


Harvard University<br />

Carbides Made by <strong>ALD</strong><br />

Green = <strong>ALD</strong> processes known <strong>for</strong> a Carbide of the Element<br />

Red = no process known <strong>for</strong> <strong>ALD</strong> of a Carbide of the Element<br />

H He<br />

Li Be B C N O F Ne<br />

Na Mg Al Si P S Cl Ar<br />

K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr<br />

Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe<br />

Cs Ba La Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn<br />

Fr Ra Ac<br />

Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu<br />

Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr


Harvard University<br />

Fluorides Made by <strong>ALD</strong><br />

Green = <strong>ALD</strong> processes known <strong>for</strong> a Fluoride of the Element<br />

Red = no process known <strong>for</strong> <strong>ALD</strong> of a Fluoride of the Element<br />

H He<br />

Li Be B C N O F Ne<br />

Na Mg Al Si P S Cl Ar<br />

K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr<br />

Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe<br />

Cs Ba La Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn<br />

Fr Ra Ac<br />

Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu<br />

Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr


Current Applications of <strong>ALD</strong><br />

Electroluminescent displays (Al 2 O 3 , AlN, ZnS)<br />

Read/Write heads in magnetic disk storage (Al 2 O 3 )<br />

Insulators in capacitors in DRAMs (Al 2 O 3 , HfO 2 )<br />

Insulation <strong>and</strong> spacer layers in microelectronics (SiO 2 , Si 3 N 4 )<br />

Metal/insulator in transistor gates (TaN/HfO 2)<br />

Planar waveguides <strong>and</strong> optical filters (SiO 2 , TiO 2 )<br />

Likely Future Applications of <strong>ALD</strong><br />

Insulators in microelectronic capacitors (Ta 2 O 5 , SrTiO 3 , LaLuO 3 )<br />

Diffusion barriers <strong>for</strong> copper in interconnects (WN, TaN, Mn)<br />

Adhesion <strong>and</strong> seed layers <strong>for</strong> interconnects (Co 4 N, Ru, Cu)<br />

Sealing pores in low-k dielectrics (SiO 2 )<br />

Magnetic disk storage (Al 2 O 3 , Fe, Co, Ni, Cu, Ru, Mn, Pt)<br />

Nano-Electronics<br />

Catalysts . . .<br />

Harvard University<br />

Applications of <strong>ALD</strong>


Definitions of Chemical Vapor <strong>Deposition</strong> (CVD)<br />

<strong>and</strong> <strong>Atomic</strong> <strong>Layer</strong> <strong>Deposition</strong> (<strong>ALD</strong>)<br />

Structures <strong>and</strong> materials made by <strong>ALD</strong><br />

Properties needed <strong>for</strong> CVD <strong>and</strong> <strong>ALD</strong> precursors:<br />

Volatility, Stability, Reactivity<br />

How to design those properties into precursors:<br />

metal amidinates<br />

High-k insulators: La 2 O 3 , LaAlO 3<br />

Harvard University<br />

Outline


Criteria <strong>for</strong> Both CVD & <strong>ALD</strong> Precursors<br />

•Sufficient volatility (> 0.1 Torr at T < 200 o C)<br />

•No thermal decomposition during vaporization<br />

•Liquid at vaporization temperature<br />

•Preferably liquid at room temperature<br />

or soluble in an inert solvent<br />

•Precursors <strong>and</strong> byproducts don’t etch films<br />

Harvard University


Criteria <strong>for</strong> CVD Precursors<br />

•Reactivity with substrate<br />

•Reactivity with surface of growing film<br />

•Thermal decomposition allowed or even needed<br />

Harvard University<br />

Criteria <strong>for</strong> <strong>ALD</strong> Precursors<br />

•Self-limited reactivity with substrate<br />

•Self-limited reactivity with the surface made by<br />

reaction of the film with the other precursor<br />

•Thermal decomposition not allowed


Usefulness of Precursors <strong>for</strong> CVD & <strong>ALD</strong><br />

Some precursors work only in CVD, but not <strong>ALD</strong>:<br />

Ni(CO) 4 , W(CO) 6 , many alkoxides<br />

Some precursors work in both CVD <strong>and</strong> <strong>ALD</strong>:<br />

many beta-diketonates <strong>and</strong> amidinates<br />

Most <strong>ALD</strong> precursors<br />

also work in CVD<br />

Some CVD precursors<br />

also work in <strong>ALD</strong><br />

Harvard University<br />

CVD<br />

<strong>ALD</strong>


Definitions of Chemical Vapor <strong>Deposition</strong> (CVD)<br />

<strong>and</strong> <strong>Atomic</strong> <strong>Layer</strong> <strong>Deposition</strong> (<strong>ALD</strong>)<br />

Structures <strong>and</strong> materials made by <strong>ALD</strong><br />

Properties needed <strong>for</strong> CVD <strong>and</strong> <strong>ALD</strong> precursors:<br />

Volatility, Stability, Reactivity<br />

How to design those properties into precursors:<br />

metal amidinates<br />

High-k insulators: La 2 O 3 , LaAlO 3<br />

Harvard University<br />

Outline


Acetamidinates: R2 Formamidinates: R<br />

= CH3 2 = H<br />

R 2<br />

R 1<br />

N<br />

N<br />

R 3<br />

M<br />

Harvard University<br />

Metal(II) Amidinates<br />

Propionamidinates: R 2 = CH 2 CH 3<br />

R 1<br />

N<br />

N<br />

R 3<br />

R 2<br />

R 1 <strong>and</strong> R 3 = alkyl groups<br />

monomer dimer<br />

R 2<br />

R 3 R1 R 3<br />

R 1<br />

N<br />

N<br />

R 3<br />

N N<br />

M<br />

M<br />

N N<br />

M-N bonds are generally reactive to H 2 O, NH 3 , H 2 , etc.<br />

The chelate structure adds to the thermal stability.<br />

The choices of R n affect the volatility, reactivity <strong>and</strong> stability.<br />

R 2<br />

R 2<br />

N<br />

N<br />

R 1<br />

R 1<br />

R 3<br />

R 2


Increasing lig<strong>and</strong> bulk<br />

Structures of Metal Bis-Acetamidinates<br />

tert-pentyl 2<br />

tert-butyl 2<br />

isopropyl 2<br />

Et-tert-Bu<br />

n-propyl 2<br />

R 1 , R 3<br />

ionic radius<br />

Harvard University<br />

c<br />

m<br />

m<br />

Ni<br />

69<br />

c<br />

m<br />

d<br />

d<br />

Co<br />

65<br />

c<br />

m<br />

d<br />

Cr<br />

73<br />

m<br />

Ge<br />

73<br />

m<br />

Zn<br />

74<br />

m<br />

d<br />

Mg<br />

72<br />

m<br />

d<br />

Fe<br />

78<br />

Increasing “size” of metal atom<br />

Mn<br />

c = crowded, less reactive, more stable, volatile monomer<br />

d<br />

d<br />

83<br />

m<br />

Bi<br />

103<br />

m<br />

d<br />

Ca<br />

100<br />

m = more reactive, less stable, volatile monomer<br />

m<br />

d = reactive, volatile dimer<br />

d<br />

d<br />

d<br />

p<br />

p<br />

Sr<br />

118<br />

d<br />

d<br />

p<br />

p<br />

Ba<br />

135<br />

p = non-volatile polymer


R 2<br />

R 1<br />

N N<br />

R3 R1 N<br />

R 2<br />

C<br />

M<br />

C N N C<br />

R 1 R 3<br />

Harvard University<br />

Metal(III) Amidinates<br />

N<br />

monomer<br />

R 3<br />

R 2<br />

Formamidinates: R 2 = H<br />

Acetamidinates: R 2 = CH 3<br />

Propionamidinates: R 2 = CH 2 CH 3<br />

R 1 <strong>and</strong> R 3 = alkyl groups<br />

Structures of dimers are unknown, probably bridged


Increasing lig<strong>and</strong> bulk<br />

Structures of Metal(III) Tris-Amidinates<br />

tert-<br />

Bu 2<br />

iso-<br />

Pr 2<br />

Et-<br />

t Bu<br />

n-Pr 2<br />

Et 2<br />

Me 2<br />

R 1 ,R 3<br />

c<br />

Al<br />

c<br />

Ga<br />

n<br />

c<br />

c<br />

m<br />

m<br />

Cr<br />

Harvard University<br />

c<br />

Co<br />

c<br />

V<br />

c<br />

Fe<br />

n<br />

c<br />

m<br />

m<br />

d<br />

Ti<br />

m<br />

Ru<br />

m<br />

m<br />

d<br />

Sc<br />

m<br />

Sb<br />

Increasing size of metal atom<br />

n = non-existent<br />

c = crowded, less reactive monomer<br />

c<br />

c<br />

c<br />

c<br />

m<br />

m<br />

m<br />

Lu<br />

c<br />

m<br />

d<br />

Y<br />

m<br />

Gd<br />

c<br />

Eu<br />

c<br />

Nd<br />

m = more reactive monomer<br />

d = low-volatility dimer<br />

m<br />

Pr<br />

c<br />

Ce<br />

c<br />

m<br />

d<br />

p<br />

p<br />

La<br />

p = non-volatile polymer


Models <strong>for</strong> Lanthanum <strong>and</strong> Sc<strong>and</strong>ium Amidinates<br />

La ion is large, so 3 amidinate<br />

lig<strong>and</strong>s are not crowded<br />

La<br />

La precursor reacts<br />

quickly with surface OH<br />

Harvard University<br />

Sc ion is small, so 3 amidinate<br />

lig<strong>and</strong>s are crowded<br />

Sc<br />

Sc precursor reacts<br />

slowly with surface OH


Zr(amd) 4 <strong>and</strong> Hf(amd) 4<br />

Harvard University<br />

Metal(IV) Tetra-Amidinates<br />

Require small R n groups<br />

such as H <strong>and</strong> CH 3<br />

H 3C<br />

H<br />

H 3C N<br />

H<br />

N<br />

CH 3<br />

N<br />

N<br />

Hf<br />

CH 3<br />

CH 3<br />

N<br />

N<br />

CH 3<br />

H<br />

N CH 3<br />

N<br />

H<br />

CH 3<br />

Thermal decomposition at 200 o C<br />

Zr amidinate is much more stable<br />

than Zr amide, Zr(NEtMe) 4<br />

Greater stability of amidinates is<br />

due to chelate structure (2 metalnitrogen<br />

bonds instead of one)


Definitions of Chemical Vapor <strong>Deposition</strong> (CVD)<br />

<strong>and</strong> <strong>Atomic</strong> <strong>Layer</strong> <strong>Deposition</strong> (<strong>ALD</strong>)<br />

Structures <strong>and</strong> materials made by <strong>ALD</strong><br />

Properties needed <strong>for</strong> CVD <strong>and</strong> <strong>ALD</strong> precursors:<br />

Volatility, Stability, Reactivity<br />

How to design those properties into precursors:<br />

metal amidinates<br />

High-k insulators: La 2 O 3 , LaAlO 3<br />

Harvard University<br />

Outline


Harvard University<br />

Thermogravimetric <strong>An</strong>alysis of<br />

Lanthanum Amidinates<br />

N<br />

N<br />

H<br />

C N<br />

N<br />

HC<br />

La<br />

H 3C<br />

N<br />

CH<br />

N<br />

N C N<br />

N<br />

C<br />

La<br />

N<br />

CH 3<br />

N<br />

C<br />

N<br />

CH 3<br />

CH 3<br />

N C N<br />

N N<br />

C<br />

N<br />

C<br />

N<br />

La<br />

H3C CH3 H3C H3C => Vaporization temperature increases with molecular mass<br />

CH 3<br />

CH 3<br />

CH 3<br />

CH 3


Vapor Pressures of Lanthanum Precursors<br />

=> La(iPr 2 -fmd) 3 is most<br />

volatile La compound known,<br />

60 mTorr at 100 o C<br />

Harvard University<br />

N<br />

H<br />

C N<br />

N<br />

HC<br />

N<br />

La<br />

N<br />

N<br />

CH<br />

La(iPrCp) 3<br />

0.1<br />

Torr


Precursors:<br />

H 2 O <strong>and</strong><br />

Harvard University<br />

<strong>ALD</strong> of La 2 O 3<br />

tris(N,N’-diisopropyl<strong>for</strong>mamidinato)lanthanum<br />

( i Pr 2 -fmd) 3 La<br />

N<br />

H<br />

C N<br />

N<br />

HC<br />

N<br />

La<br />

N<br />

N<br />

CH<br />

=> 0.16 nm per cycle<br />

=> negligible delay<br />

in nucleation on SiH


Growth per La Cycle <strong>for</strong> <strong>ALD</strong> LaAlO 3<br />

Precursors:<br />

Me 3 Al, H 2 O <strong>and</strong><br />

90 o C<br />

Harvard University<br />

tris(N,N’-diisopropyl<strong>for</strong>mamidinato)lanthanum<br />

( i Pr 2 -fmd) 3 La<br />

110 o C<br />

100 o C<br />

120 o C<br />

Bubbler temperature 90 to 120 o C<br />

Substrate temperature 300 o C<br />

=> <strong>ALD</strong> saturation at<br />

0.08 nm per La cycle<br />

Growth even at bubbler<br />

temperature


Precursors:<br />

Me 3 Al, H 2 O <strong>and</strong><br />

Harvard University<br />

Composition of <strong>ALD</strong> La xAl 1-xO 3/2<br />

tris(N,N’-diisopropyl<strong>for</strong>mamidinato)lanthanum<br />

( i Pr 2 -fmd) 3 La<br />

Growth conditions:<br />

Bubbler temperature 120 o C<br />

Substrate temperature 300 o C<br />

=> Composition control<br />

by changing ratio of<br />

precursor doses<br />

=> 2 x as many Al atoms<br />

as La atoms per dose<br />

N<br />

H<br />

C N<br />

N<br />

HC<br />

N<br />

La<br />

N<br />

N<br />

CH


Precursor Reactivity with SiH Surface by IR<br />

La amidinate reacts<br />

with nearly all the<br />

Si-H bonds in only<br />

3 cycles<br />

Hf alkylamide only<br />

reacts with half of<br />

the Si-H bonds on<br />

the surface even<br />

after many cycles<br />

=> Completely uni<strong>for</strong>m surface coverage by La amidinate<br />

Details of the infrared data were given at AVS Conference <strong>ALD</strong> 2007 by<br />

J. Kwon, M. Dai, E. Langereis, Y. Chabal, K.-H. Kim <strong>and</strong> R. G. Gordon.<br />

Harvard University


2 nm<br />

TEMs of <strong>ALD</strong> LaAlO 3 <strong>and</strong> GdScO 3<br />

=> Sharp interfaces with silicon without interlayers<br />

=> Uni<strong>for</strong>m nucleation <strong>and</strong> thickness<br />

Harvard University<br />

LaAlO 3<br />

Si


Leakage Current through <strong>ALD</strong> La 2 O 3<br />

Vapor source: a solution of the La precursor (mp 194 o C)<br />

vaporized with an MKS MDD liquid delivery system<br />

Low leakage current similar to films made from a bubbler.<br />

=> negligible carbon contamination from solvent<br />

Harvard University


Leakage (A/cm 2 )<br />

10 2<br />

10 0<br />

10 -2<br />

10 -4<br />

10 -6<br />

10 -8<br />

Harvard University<br />

Comparison of leakage<br />

SiO 2<br />

<strong>ALD</strong> LaAlO 3<br />

<strong>ALD</strong> GdScO 3<br />

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0<br />

EOT (nm, |V g -V fb |=1V)<br />

<strong>ALD</strong> LaScO 3<br />

<strong>ALD</strong> HfO 2 from IMEC (Ref.1)<br />

MOCVD HfO 2 from IMEC (Ref.2)<br />

<strong>ALD</strong> HfO 2 from IBM (Ref.3)<br />

Sputter HfO 2 (Ref.4)


Harvard University<br />

Summary<br />

<strong>ALD</strong> requires volatile precursors with self-limited reactivity<br />

<strong>and</strong> high thermal stability<br />

Precursors with these properties are known <strong>for</strong> most<br />

elements<br />

<strong>ALD</strong> is a proven process with many current applications<br />

Many more uses <strong>for</strong> <strong>ALD</strong> are expected in the future


Harvard University<br />

Acknowledgements<br />

Metals: Booyong Lim, <strong>An</strong>tti Rahtu, Jin-Seong Park, Venkateswara Pallem<br />

Cu, Co: Zhengwen Li, Séan Barry, Don Keun Lee, Harish Bh<strong>and</strong>ari, Hoon Kim<br />

Ruthenium: Huazhi Li, Titta Aaltonen, Jun Ni<br />

Metal Nitrides: Jill Becker, Seigi Suh, Esther Kim, Kyoung-ha Kyoung ha Kim<br />

Metal oxides: Dennis Hausmann, Philippe de Rouffignac, Jin-Seong Park,<br />

Kyoung-ha Kyoung ha Kim, Leo Rodriguez, Mike Coulter, Jean Sébastien Lehn, Sheng<br />

Xu, Hongtao Wang, Yiqun Liu<br />

TEM: Damon Farmer; Hongtao Wang, SEMATECH, Applied Materials<br />

DRAM trenches supplied by Infineon (Qimonda)<br />

La, Co, Cu <strong>and</strong> Ru precursors supplied by Rohm <strong>and</strong> Haas Electronic Materials<br />

SiO 2 <strong>and</strong> W precursors supplied by Sigma-Aldrich Company<br />

SEMs <strong>and</strong> Electrical <strong>An</strong>alysis by Daniel Josell, NIST<br />

Supported by the US National Science Foundation <strong>and</strong> Intel Corporation

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!