06.03.2013 Views

Past Climate Variability and Change in the Arctic and at High Latitudes

Past Climate Variability and Change in the Arctic and at High Latitudes

Past Climate Variability and Change in the Arctic and at High Latitudes

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

low-density snow to high-density ice, <strong>and</strong> <strong>the</strong><br />

cycles <strong>the</strong>n survive for millennia before be<strong>in</strong>g<br />

gradually smoo<strong>the</strong>d.<br />

Records of dust concentr<strong>at</strong>ion appear to be<br />

almost unaffected by smooth<strong>in</strong>g processes,<br />

but some chemical constituents seem to be<br />

somewh<strong>at</strong> mobile <strong>and</strong> thus to have <strong>the</strong>ir records<br />

smoo<strong>the</strong>d over a few years <strong>in</strong> older samples<br />

(Steffensen et al., 1997; Steffensen <strong>and</strong> Dahl-<br />

Jensen, 1997). Unfortun<strong>at</strong>ely, despite important<br />

recent progress (Rempel <strong>and</strong> Wettlaufer, 2003),<br />

<strong>the</strong> processes of chemical diffusion are not as<br />

well understood as are isotopic r<strong>at</strong>ios, so confident<br />

model<strong>in</strong>g of <strong>the</strong> chemical diffusion is not<br />

possible <strong>and</strong> <strong>the</strong> degree of smooth<strong>in</strong>g is not as<br />

well quantified as one would like. Persistence<br />

of rel<strong>at</strong>ively sharp steps <strong>in</strong> old ice th<strong>at</strong> is still <strong>in</strong><br />

normal str<strong>at</strong>igraphic order demonstr<strong>at</strong>es th<strong>at</strong> <strong>the</strong><br />

diffusion is not extensive. The high-resolution<br />

fe<strong>at</strong>ures of <strong>the</strong> dust <strong>and</strong> chemistry records have<br />

been used to d<strong>at</strong>e <strong>the</strong> glacial part of <strong>the</strong> GiSp2<br />

core by us<strong>in</strong>g ma<strong>in</strong>ly annual cycles of dust<br />

(Meese et al., 1997) <strong>and</strong> <strong>the</strong> nGrip core by us<strong>in</strong>g<br />

annual layers <strong>in</strong> different ionic constituents<br />

toge<strong>the</strong>r with <strong>the</strong> visible dust layers (cloudy<br />

b<strong>and</strong>s; Figure 4.5) back to 42 ka (Andersen<br />

et al., 2006, Svensson et al., 2006). Figure 4.5<br />

shows <strong>the</strong> visible cloudy b<strong>and</strong>s <strong>in</strong> a 72 ka section<br />

of <strong>the</strong> nGrip core. The cloudy b<strong>and</strong>s are<br />

generally assumed to be due to t<strong>in</strong>y gas bubbles<br />

th<strong>at</strong> form on dust particles as <strong>the</strong> core is brought<br />

to surface. Dur<strong>in</strong>g storage of core <strong>in</strong> <strong>the</strong> labor<strong>at</strong>ory,<br />

<strong>the</strong>se b<strong>and</strong>s fade somewh<strong>at</strong>. However, <strong>the</strong><br />

very sharp n<strong>at</strong>ure of <strong>the</strong> b<strong>and</strong>s when <strong>the</strong> core<br />

is recovered suggests th<strong>at</strong> diffusive smooth<strong>in</strong>g<br />

has not been important, <strong>and</strong> th<strong>at</strong> high-timeresolution<br />

d<strong>at</strong>a are preserved.<br />

<strong>Past</strong> <strong>Clim<strong>at</strong>e</strong> <strong>Variability</strong> <strong>and</strong> <strong>Change</strong> <strong>in</strong> <strong>the</strong> <strong>Arctic</strong> <strong>and</strong> <strong>at</strong> <strong>High</strong> L<strong>at</strong>itudes<br />

4.4 CLASSES OF CHANGES AND<br />

THEIR RATES<br />

The day-to-night <strong>and</strong> summer-to-w<strong>in</strong>ter changes<br />

are typically larger—but have less persistent<br />

effect on <strong>the</strong> clim<strong>at</strong>e—than long-lived fe<strong>at</strong>ures<br />

such as ice ages. This observ<strong>at</strong>ion suggests<br />

th<strong>at</strong> it is wise to separ<strong>at</strong>e r<strong>at</strong>es of change on <strong>the</strong><br />

basis of persistence. As discussed <strong>in</strong> Chapter 2,<br />

Paleoclim<strong>at</strong>e Concepts, section 2.2 on forc<strong>in</strong>gs,<br />

effects from <strong>the</strong> ag<strong>in</strong>g of <strong>the</strong> Sun can be<br />

discounted on “short” time scales of 100 m.y.<br />

or less, but many o<strong>the</strong>r forc<strong>in</strong>gs must be considered.<br />

Several are discussed below. For <strong>the</strong><br />

last ice-age cycle, special reliance is placed on<br />

GreenlAnd ice-core records because of <strong>the</strong>ir<br />

high time resolution <strong>and</strong> confident paleo<strong>the</strong>rmometery.<br />

But GreenlAnd is only a small part<br />

of <strong>the</strong> whole <strong>Arctic</strong>, <strong>and</strong> this limit<strong>at</strong>ion should<br />

be borne <strong>in</strong> m<strong>in</strong>d.<br />

4.4.1 Tectonic Time Scales<br />

As also discussed <strong>in</strong> section 2.2 on forc<strong>in</strong>gs,<br />

drift<strong>in</strong>g cont<strong>in</strong>ents <strong>and</strong> rel<strong>at</strong>ed slow shifts <strong>in</strong><br />

global biogeochemical cycl<strong>in</strong>g, toge<strong>the</strong>r with<br />

evolv<strong>in</strong>g life forms, can have profound local <strong>and</strong><br />

global effects on clim<strong>at</strong>e dur<strong>in</strong>g tens of millions<br />

of years. If a cont<strong>in</strong>ent moves from equ<strong>at</strong>or to<br />

pole, <strong>the</strong> clim<strong>at</strong>e of th<strong>at</strong> cont<strong>in</strong>ent will change<br />

gre<strong>at</strong>ly. In addition, by affect<strong>in</strong>g ocean currents,<br />

ability to grow ice sheets, cloud p<strong>at</strong>terns, <strong>and</strong><br />

more, <strong>the</strong> mov<strong>in</strong>g cont<strong>in</strong>ent may have an effect<br />

on global <strong>and</strong> regional clim<strong>at</strong>es as well, although<br />

this effect will <strong>in</strong> general be much more subtle<br />

than <strong>the</strong> effect on <strong>the</strong> cont<strong>in</strong>ent’s own clim<strong>at</strong>e<br />

(e.g., Donnadieu et al., 2006).<br />

Drift<strong>in</strong>g cont<strong>in</strong>ents <strong>and</strong><br />

rel<strong>at</strong>ed slow shifts <strong>in</strong><br />

global biogeochemical<br />

cycl<strong>in</strong>g, toge<strong>the</strong>r with<br />

evolv<strong>in</strong>g life forms, can<br />

have profound local <strong>and</strong><br />

global effects on clim<strong>at</strong>e<br />

dur<strong>in</strong>g tens of millions<br />

of years.<br />

Figure 4.5. A l<strong>in</strong>escan image of NGRIP ice core <strong>in</strong>terval 2528.35–2530.0 m depth. Gray layers, annual cloudy b<strong>and</strong>s; annual layers<br />

are about 1.5 cm thick. Age of this <strong>in</strong>terval is about 72 ka, which corresponds with Greenl<strong>and</strong> Interstadial 19 (Svensson et al.,<br />

2005). [Copyright 2005, reproduced by permission of American Geophysical Union.]<br />

103

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!