06.03.2013 Views

Past Climate Variability and Change in the Arctic and at High Latitudes

Past Climate Variability and Change in the Arctic and at High Latitudes

Past Climate Variability and Change in the Arctic and at High Latitudes

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

The youngest of <strong>the</strong>se early Qu<strong>at</strong>ernary events<br />

of high sea level is <strong>the</strong> Fishcreekian transgression<br />

(about 2.1–2.4 Ma), suggested to be <strong>the</strong><br />

same age as <strong>the</strong> kAp københAvn Form<strong>at</strong>ion on<br />

GreenlAnd (Brigham-Grette <strong>and</strong> Carter, 1992).<br />

However, age control is not complete, <strong>and</strong><br />

Brigham (1985) <strong>and</strong> Goodfriend et al. (1996)<br />

suggested th<strong>at</strong> <strong>the</strong> Fishcreekian could be as<br />

young as 1.4 Ma. This deposit conta<strong>in</strong>s several<br />

mollusk species th<strong>at</strong> currently are found only to<br />

<strong>the</strong> south. Moreover, sea otter rema<strong>in</strong>s <strong>and</strong> <strong>the</strong><br />

<strong>in</strong>tertidal gastropod Littor<strong>in</strong>a squalida <strong>at</strong> Fish<br />

Creek suggest th<strong>at</strong> perennial sea ice was absent<br />

or severely restricted dur<strong>in</strong>g <strong>the</strong> Fishcreekian<br />

transgression (Carter et al., 1986). Correl<strong>at</strong>ive<br />

deposits rich <strong>in</strong> mollusk species th<strong>at</strong> currently<br />

live only well to <strong>the</strong> south are reported from<br />

<strong>the</strong> coastal pla<strong>in</strong> <strong>at</strong> noMe, AlASkA (Kaufman <strong>and</strong><br />

Brigham-Grette, 1993).<br />

The available d<strong>at</strong>a clearly <strong>in</strong>dic<strong>at</strong>e episodes of<br />

rel<strong>at</strong>ively warm conditions th<strong>at</strong> correl<strong>at</strong>e with<br />

high sea levels <strong>and</strong> reduced sea ice <strong>in</strong> <strong>the</strong> early<br />

Qu<strong>at</strong>ernary. The high sea levels suggest melt<strong>in</strong>g<br />

of l<strong>and</strong> ice (see Chapter 5, History of <strong>the</strong> Greenl<strong>and</strong><br />

Ice Sheet). Thus <strong>the</strong> correl<strong>at</strong>ion of warmth<br />

with dim<strong>in</strong>ished ice on l<strong>and</strong> <strong>and</strong> <strong>at</strong> sea (see<br />

Chapter 6, History of <strong>Arctic</strong> Sea Ice)—<strong>in</strong>dic<strong>at</strong>ed<br />

by recent <strong>in</strong>strumental observ<strong>at</strong>ions, model<br />

results, <strong>and</strong> d<strong>at</strong>a from o<strong>the</strong>r time <strong>in</strong>tervals—is<br />

also found for this time <strong>in</strong>terval. Improved time<br />

resolution of histories of forc<strong>in</strong>g <strong>and</strong> response<br />

will be required to assess <strong>the</strong> causes of <strong>the</strong><br />

changes, but estim<strong>at</strong>es of forc<strong>in</strong>gs <strong>in</strong>dic<strong>at</strong>e th<strong>at</strong><br />

<strong>the</strong>y were rel<strong>at</strong>ively moder<strong>at</strong>e <strong>and</strong> thus th<strong>at</strong> <strong>the</strong><br />

strong <strong>Arctic</strong> amplific<strong>at</strong>ion of clim<strong>at</strong>e change<br />

was active <strong>in</strong> <strong>the</strong>se early Qu<strong>at</strong>ernary events.<br />

3.4.3 The Mid-Pleistocene Transition:<br />

41-k.y. <strong>and</strong> 100-k.y. Worlds<br />

S<strong>in</strong>ce <strong>the</strong> l<strong>at</strong>e Pliocene, <strong>the</strong> cyclical wax<strong>in</strong>g <strong>and</strong><br />

wan<strong>in</strong>g of cont<strong>in</strong>ental ice sheets have dom<strong>in</strong><strong>at</strong>ed<br />

global clim<strong>at</strong>e variability. The vari<strong>at</strong>ions<br />

<strong>in</strong> sunsh<strong>in</strong>e caused by fe<strong>at</strong>ures of Earth’s orbit<br />

have been very important <strong>in</strong> <strong>the</strong>se ice-sheet<br />

changes, as described <strong>in</strong> Chapter 2 (Paleoclim<strong>at</strong>e<br />

Concepts).<br />

After <strong>the</strong> onset of glaci<strong>at</strong>ion <strong>in</strong> North America<br />

about 2.7 Ma (Raymo, 1994), ice grew <strong>and</strong><br />

shrank as Earth’s obliquity (tilt) varied <strong>in</strong> its<br />

41 k.y. cycle. But between 1.2 <strong>and</strong> 0.7 Ma, <strong>the</strong><br />

vari<strong>at</strong>ions <strong>in</strong> ice volume became larger <strong>and</strong><br />

<strong>Past</strong> <strong>Clim<strong>at</strong>e</strong> <strong>Variability</strong> <strong>and</strong> <strong>Change</strong> <strong>in</strong> <strong>the</strong> <strong>Arctic</strong> <strong>and</strong> <strong>at</strong> <strong>High</strong> L<strong>at</strong>itudes<br />

slower, <strong>and</strong> an approxim<strong>at</strong>ely 100-k.y. period<br />

has dom<strong>in</strong><strong>at</strong>ed especially dur<strong>in</strong>g <strong>the</strong> last<br />

700 k.y. or so (Figure 3.25). Although Earth’s<br />

eccentricity varies with an approxim<strong>at</strong>ely<br />

100-k.y. period, this vari<strong>at</strong>ion does not cause<br />

as much change <strong>in</strong> sunsh<strong>in</strong>e <strong>in</strong> <strong>the</strong> key regions<br />

of ice growth as did <strong>the</strong> faster cycles, so <strong>the</strong><br />

reasons for <strong>the</strong> dom<strong>in</strong>ant 100-k.y. period <strong>in</strong> ice<br />

volume rema<strong>in</strong> obscure. Roe <strong>and</strong> Allen (1999)<br />

assessed six different explan<strong>at</strong>ions of this behavior<br />

<strong>and</strong> found th<strong>at</strong> all fit <strong>the</strong> d<strong>at</strong>a ra<strong>the</strong>r well.<br />

The record is still too short to allow <strong>the</strong> d<strong>at</strong>a to<br />

demonstr<strong>at</strong>e <strong>the</strong> superiority of any one model.<br />

Models for <strong>the</strong> 100-k.y. variability commonly<br />

assign a major role to <strong>the</strong> ice sheets <strong>the</strong>mselves<br />

<strong>and</strong> especially to <strong>the</strong> lAurentide ice Sheet on<br />

North America, which dom<strong>in</strong><strong>at</strong>ed <strong>the</strong> total<br />

global change <strong>in</strong> ice volume (e.g., Marchant <strong>and</strong><br />

Denton, 1996). For example, Marshall <strong>and</strong> Clark<br />

(2002) modeled <strong>the</strong> growth <strong>and</strong> shr<strong>in</strong>kage of<br />

<strong>the</strong> lAurentide ice Sheet <strong>and</strong> found th<strong>at</strong> dur<strong>in</strong>g<br />

growth <strong>the</strong> ice was frozen to <strong>the</strong> bed bene<strong>at</strong>h<br />

<strong>and</strong> unable to move rapidly. After many tens<br />

of thous<strong>and</strong>s of years, ice had thickened sufficiently<br />

th<strong>at</strong> it trapped Earth’s he<strong>at</strong> <strong>and</strong> thawed<br />

<strong>the</strong> bed, which allowed faster flow. Faster flow<br />

of <strong>the</strong> ice sheet lowered <strong>the</strong> upper surface, which<br />

allowed warm<strong>in</strong>g <strong>and</strong> melt<strong>in</strong>g (see Chapter 5,<br />

History of <strong>the</strong> Greenl<strong>and</strong> Ice Sheet). Behavior<br />

such as th<strong>at</strong> described could cause <strong>the</strong> ma<strong>in</strong><br />

vari<strong>at</strong>ions of ice volume to be slower than <strong>the</strong><br />

ma<strong>in</strong> vari<strong>at</strong>ions <strong>in</strong> sunsh<strong>in</strong>e caused by Earth’s<br />

orbital fe<strong>at</strong>ures, <strong>and</strong> <strong>the</strong> slow-flow<strong>in</strong>g ice might<br />

partly ignore <strong>the</strong> faster vari<strong>at</strong>ions <strong>in</strong> sunsh<strong>in</strong>e<br />

until <strong>the</strong> shift to faster flow allowed a faster<br />

response. Note th<strong>at</strong> this explan<strong>at</strong>ion rema<strong>in</strong>s<br />

a hypo<strong>the</strong>sis, <strong>and</strong> o<strong>the</strong>r possibilities exist.<br />

Altern<strong>at</strong>ive hypo<strong>the</strong>ses require <strong>in</strong>teractions <strong>in</strong><br />

<strong>the</strong> Sou<strong>the</strong>rn Ocean between <strong>the</strong> ocean <strong>and</strong> sea<br />

ice <strong>and</strong> between <strong>the</strong> ocean <strong>and</strong> <strong>the</strong> <strong>at</strong>mosphere<br />

(Gildor et al., 2002). For example, Toggweiler<br />

(2008) suggested th<strong>at</strong> because of <strong>the</strong> close connection<br />

between <strong>the</strong> sou<strong>the</strong>rn westerly w<strong>in</strong>ds<br />

<strong>and</strong> meridional overturn<strong>in</strong>g circul<strong>at</strong>ion <strong>in</strong> <strong>the</strong><br />

Sou<strong>the</strong>rn Ocean, shifts <strong>in</strong> w<strong>in</strong>d fields very<br />

likely control <strong>the</strong> exchange of CO 2 between <strong>the</strong><br />

ocean <strong>and</strong> <strong>the</strong> <strong>at</strong>mosphere. Carbon models support<br />

<strong>the</strong> notion th<strong>at</strong> wea<strong>the</strong>r<strong>in</strong>g <strong>and</strong> <strong>the</strong> burial<br />

of carbon<strong>at</strong>e can be perturbed <strong>in</strong> ways th<strong>at</strong><br />

alter deep ocean carbon storage <strong>and</strong> th<strong>at</strong> result<br />

<strong>in</strong> 100-k.y. CO 2 cycles (Toggweiler, 2008).<br />

O<strong>the</strong>rs have suggested th<strong>at</strong> 100-k.y. cycles<br />

<strong>and</strong> CO 2 might be controlled by variability <strong>in</strong><br />

obliquity cycles (i.e., two or three 41-k.y. cycles<br />

The available d<strong>at</strong>a<br />

clearly <strong>in</strong>dic<strong>at</strong>e episodes<br />

of rel<strong>at</strong>ively warm<br />

conditions th<strong>at</strong> correl<strong>at</strong>e<br />

with high sea levels <strong>and</strong><br />

reduced sea ice <strong>in</strong> <strong>the</strong><br />

early Qu<strong>at</strong>ernary.<br />

67

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!