06.03.2013 Views

Past Climate Variability and Change in the Arctic and at High Latitudes

Past Climate Variability and Change in the Arctic and at High Latitudes

Past Climate Variability and Change in the Arctic and at High Latitudes

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

• faster flow of ice from an adjacent<br />

ice sheet;<br />

• flow of ice conta<strong>in</strong><strong>in</strong>g more clasts;<br />

• loss of an ice shelf (most ice shelves<br />

experience basal melt<strong>in</strong>g, tend<strong>in</strong>g to<br />

remove debris <strong>in</strong> <strong>the</strong> ice, so ice-shelf<br />

loss would allow calv<strong>in</strong>g of bergs<br />

bear<strong>in</strong>g more debris);<br />

• cool<strong>in</strong>g of ocean w<strong>at</strong>ers th<strong>at</strong> allows<br />

icebergs—<strong>and</strong> <strong>the</strong>ir debris—to reach<br />

a site;<br />

• loss of extensive coastal sea ice th<strong>at</strong><br />

allows icebergs to reach sites more<br />

rapidly (Reeh, 2004);<br />

• alter<strong>at</strong>ions <strong>in</strong> currents or w<strong>in</strong>ds th<strong>at</strong><br />

control iceberg drift tracks;<br />

• or o<strong>the</strong>r changes.<br />

The very large changes <strong>in</strong> volume of <strong>in</strong>com<strong>in</strong>g<br />

sediment from <strong>the</strong> North American lAurentide<br />

ice Sheet dur<strong>in</strong>g He<strong>in</strong>rich events (Hemm<strong>in</strong>g,<br />

2004) are generally <strong>in</strong>terpreted to be true <strong>in</strong>dic<strong>at</strong>ors<br />

of ice-dynamical changes (e.g., Alley <strong>and</strong><br />

MacAyeal, 1994), but even th<strong>at</strong> is deb<strong>at</strong>ed (e.g.,<br />

Hulbe et al., 2004). Thus, <strong>the</strong> mar<strong>in</strong>e-sediment<br />

record is consistent with GreenlAnd fluctu<strong>at</strong>ions<br />

<strong>in</strong> concert with millennial variability dur<strong>in</strong>g<br />

<strong>the</strong> cool<strong>in</strong>g <strong>in</strong>to MIS 2. Moreover, tra<strong>in</strong>ed<br />

observers have <strong>in</strong>terpreted <strong>the</strong> records as <strong>in</strong>dic<strong>at</strong><strong>in</strong>g<br />

millennial oscill<strong>at</strong>ions of <strong>the</strong> GreenlAnd<br />

ice Sheet <strong>in</strong> concert with clim<strong>at</strong>e, but those<br />

fluctu<strong>at</strong>ions cannot be demonstr<strong>at</strong>ed uniquely.<br />

5.3.5 Ice-Sheet Retre<strong>at</strong> from <strong>the</strong> Last<br />

Glacial Maximum (MIS 2)<br />

5.3.5a clim<strong>at</strong>ic history <strong>and</strong> forc<strong>in</strong>g<br />

The coldest conditions recorded <strong>in</strong> GreenlAnd<br />

ice cores s<strong>in</strong>ce MIS 6 were reached about 24 ka,<br />

which corresponds closely <strong>in</strong> time with <strong>the</strong><br />

m<strong>in</strong>imum <strong>in</strong> local midsummer sunsh<strong>in</strong>e <strong>and</strong><br />

with He<strong>in</strong>rich Event H2. The suite of sediment<br />

cores from denMArk StrAit (Figures 5.8 <strong>and</strong><br />

5.10A) plus d<strong>at</strong>a from o<strong>the</strong>r sediment cores<br />

(VM28-14 <strong>and</strong> HU93030-007) <strong>in</strong>dic<strong>at</strong>e th<strong>at</strong> <strong>the</strong><br />

most extreme values <strong>in</strong>dic<strong>at</strong><strong>in</strong>g Last Glacial<br />

Maximum <strong>in</strong> δ 18O of mar<strong>in</strong>e foram<strong>in</strong>ifera occurred<br />

~18–20 ka (slightly younger than <strong>the</strong> Last<br />

Glacial Maximum values <strong>in</strong> <strong>the</strong> ice cores) with<br />

values of 4.6‰ <strong>in</strong>dic<strong>at</strong><strong>in</strong>g cold, salty w<strong>at</strong>ers.<br />

<strong>Past</strong> <strong>Clim<strong>at</strong>e</strong> <strong>Variability</strong> <strong>and</strong> <strong>Change</strong> <strong>in</strong> <strong>the</strong> <strong>Arctic</strong> <strong>and</strong> <strong>at</strong> <strong>High</strong> L<strong>at</strong>itudes<br />

The “orbital” warm<strong>in</strong>g signal <strong>in</strong> ice-core records<br />

<strong>and</strong> o<strong>the</strong>r clim<strong>at</strong>e records is fairly weak until<br />

perhaps 19 ka or so (Alley et al., 2002). The very<br />

rapid onset of warmth about 14.7 ka (<strong>the</strong> Bøll<strong>in</strong>g<br />

<strong>in</strong>terstadial) is quite prom<strong>in</strong>ent. However, more<br />

than a third of <strong>the</strong> total deglacial warm<strong>in</strong>g<br />

was achieved before th<strong>at</strong> abrupt step, <strong>and</strong> th<strong>at</strong><br />

pre-14.7 ka orbital warm<strong>in</strong>g was <strong>in</strong>terrupted<br />

by He<strong>in</strong>rich event H1. Bøll<strong>in</strong>g warmth was<br />

followed by general cool<strong>in</strong>g (punctu<strong>at</strong>ed by two<br />

prom<strong>in</strong>ent but short-lived cold events, usually<br />

called <strong>the</strong> Older Dryas <strong>and</strong> <strong>the</strong> Inter-Allerød<br />

cold period), before faster cool<strong>in</strong>g led <strong>in</strong>to <strong>the</strong><br />

Younger Dryas about 12.8 ka. Gradual warm<strong>in</strong>g<br />

<strong>the</strong>n occurred through <strong>the</strong> Younger Dryas,<br />

followed by a step warm<strong>in</strong>g <strong>at</strong> <strong>the</strong> end of <strong>the</strong><br />

Younger Dryas about 11.5 ka. This abrupt<br />

warm<strong>in</strong>g was followed by ramp warm<strong>in</strong>g to<br />

above recent values by 9 ka or so, punctu<strong>at</strong>ed<br />

by <strong>the</strong> short-lived cold event of <strong>the</strong> Preboreal<br />

Oscill<strong>at</strong>ion about 11.2–11.4 ka (Björck et al.,<br />

1997; Geirsdottir et al., 1997; Hald <strong>and</strong> Hagen,<br />

1998; Fisher et al., 2002; Andrews <strong>and</strong> Dunhill,<br />

2004; van der Plicht et al., 2004; Kobashi et al.,<br />

2008), <strong>and</strong> followed by <strong>the</strong> short-lived cold event<br />

about 8.3–8.2 ka (<strong>the</strong> “8k event”; e.g., Alley <strong>and</strong><br />

Ágústsdóttir, 2005).<br />

The cold times of He<strong>in</strong>rich events H2, H1, <strong>the</strong><br />

Younger Dryas, <strong>the</strong> 8k event, <strong>and</strong> probably o<strong>the</strong>r<br />

short-lived cold events <strong>in</strong>clud<strong>in</strong>g <strong>the</strong> Preboreal<br />

Oscill<strong>at</strong>ion are l<strong>in</strong>ked to gre<strong>at</strong>ly exp<strong>and</strong>ed<br />

w<strong>in</strong>tertime sea ice <strong>in</strong> response to decreases <strong>in</strong><br />

near-surface sal<strong>in</strong>ity <strong>and</strong> to <strong>the</strong> strength of <strong>the</strong><br />

overturn<strong>in</strong>g circul<strong>at</strong>ion <strong>in</strong> <strong>the</strong> north AtlAntic<br />

(see review by Alley, 2007). The cool<strong>in</strong>g associ<strong>at</strong>ed<br />

with <strong>the</strong>se oceanic changes probably<br />

affected summers <strong>in</strong> <strong>and</strong> around GreenlAnd<br />

(but see Bjorck et al., 2002 <strong>and</strong> Jenn<strong>in</strong>gs et al.,<br />

2002a), but <strong>the</strong> changes were largest <strong>in</strong> w<strong>in</strong>tertime<br />

(Denton et al., 2005).<br />

Peak MIS 1/Holocene summertime warmth before<br />

<strong>and</strong> after <strong>the</strong> 8.2-ka event was, for roughly<br />

millennial averages, ~1.3°C above l<strong>at</strong>e Holocene<br />

values <strong>in</strong> central GreenlAnd, based on frequency<br />

of occurrence of melt layers <strong>in</strong> <strong>the</strong> GiSp2 ice core<br />

(Alley <strong>and</strong> An<strong>and</strong>akrishnan, 1995), with meanannual<br />

changes slightly larger although still<br />

smaller than ~2°C (<strong>and</strong> with correspond<strong>in</strong>gly<br />

larger w<strong>in</strong>tertime changes); o<strong>the</strong>r <strong>in</strong>dic<strong>at</strong>ors<br />

are consistent with this <strong>in</strong>terpret<strong>at</strong>ion (Alley et<br />

al., 1999). Indic<strong>at</strong>ors from around GreenlAnd<br />

similarly show mid-Holocene warmth, although<br />

with different sites often show<strong>in</strong>g peak warmth<br />

Peak Holocene warmth<br />

was followed by cool<strong>in</strong>g<br />

(with oscill<strong>at</strong>ions) <strong>in</strong>to <strong>the</strong><br />

Little Ice Age.<br />

149

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!