06.03.2013 Views

Past Climate Variability and Change in the Arctic and at High Latitudes

Past Climate Variability and Change in the Arctic and at High Latitudes

Past Climate Variability and Change in the Arctic and at High Latitudes

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

–112.50<br />

–90<br />

–67.50<br />

SURFACE BROADBAND ALBEDO, JUNE.<br />

–135<br />

-45<br />

–180 180<br />

–157.50 157.50<br />

energy balance (Peixoto <strong>and</strong> Oort, 1992). Open<br />

ocean, on <strong>the</strong> o<strong>the</strong>r h<strong>and</strong>, has a low albedo; it<br />

absorbs almost all solar energy when <strong>the</strong> Sun<br />

angle is high. <strong>Change</strong>s <strong>in</strong> albedo are most<br />

important <strong>in</strong> <strong>the</strong> <strong>Arctic</strong> summer, when solar<br />

radi<strong>at</strong>ion is <strong>at</strong> a maximum, whereas changes <strong>in</strong><br />

<strong>the</strong> w<strong>in</strong>ter albedo have little <strong>in</strong>fluence on <strong>the</strong><br />

energy balance because little solar radi<strong>at</strong>ion<br />

reaches <strong>the</strong> surface <strong>the</strong>n. In general, warm<strong>in</strong>g<br />

reduces ice <strong>and</strong> snow whereas cool<strong>in</strong>g allows<br />

<strong>the</strong>m to extend, so <strong>the</strong> changes <strong>in</strong> ice <strong>and</strong> snow<br />

act as positive feedbacks to amplify clim<strong>at</strong>e<br />

changes (e.g., Lemke et al., 2007).<br />

3.2.2 Ice-Insul<strong>at</strong>ion Feedback<br />

In addition to its effects on albedo, sea ice also<br />

causes a positive <strong>in</strong>sul<strong>at</strong>ion feedback, primarily<br />

<strong>in</strong> <strong>the</strong> w<strong>in</strong>tertime. Ice effectively blocks he<strong>at</strong><br />

transfer between rel<strong>at</strong>ively warm ocean (<strong>at</strong> or<br />

above <strong>the</strong> freez<strong>in</strong>g po<strong>in</strong>t of seaw<strong>at</strong>er) <strong>and</strong> cold<br />

<strong>at</strong>mosphere (which, <strong>in</strong> <strong>the</strong> <strong>Arctic</strong> w<strong>in</strong>ter, averages<br />

–40°C (Chapman <strong>and</strong> Walsh, 2007). If sea<br />

ice is th<strong>in</strong>ned by warm<strong>in</strong>g, <strong>the</strong>n <strong>the</strong> ocean he<strong>at</strong>s<br />

<strong>the</strong> overly<strong>in</strong>g <strong>at</strong>mosphere <strong>in</strong> w<strong>in</strong>ter months,<br />

amplify<strong>in</strong>g th<strong>at</strong> warm<strong>in</strong>g.<br />

90<br />

85<br />

80<br />

75<br />

70<br />

–22.50 22.50<br />

65<br />

60<br />

<strong>Past</strong> <strong>Clim<strong>at</strong>e</strong> <strong>Variability</strong> <strong>and</strong> <strong>Change</strong> <strong>in</strong> <strong>the</strong> <strong>Arctic</strong> <strong>and</strong> <strong>at</strong> <strong>High</strong> L<strong>at</strong>itudes<br />

135<br />

45<br />

112.50<br />

67.50<br />

0.90<br />

0.80<br />

0.70<br />

0.60<br />

0.50<br />

0.40<br />

0.30<br />

0.20<br />

0.10<br />

0.00<br />

ALBEDO<br />

I. Open ocean<br />

α=0.06<br />

II. Bare ice<br />

α=0.5<br />

III. Ice with snow<br />

Figure 3.4. Albedo values <strong>in</strong> <strong>the</strong> <strong>Arctic</strong>. A) Advanced Very <strong>High</strong> Resolution Radiometer (AVHRR)derived<br />

<strong>Arctic</strong> albedo values <strong>in</strong> June, 1982–2004 multi-year average, show<strong>in</strong>g <strong>the</strong> strong contrast between<br />

snow- <strong>and</strong> ice-covered areas (green through red) <strong>and</strong> open w<strong>at</strong>er or l<strong>and</strong> (blue). [Image courtesy of<br />

X. Wang, University of Wiscons<strong>in</strong>-Madison, CIMSS/NOAA.] B) Albedo feedbacks. Albedo is <strong>the</strong> fraction<br />

of <strong>in</strong>cident sunlight th<strong>at</strong> is reflected. Snow, ice, <strong>and</strong> glaciers have high albedo. Dark objects such as <strong>the</strong><br />

open ocean, which absorbs some 93% of <strong>the</strong> Sun’s energy, have low albedo (about 0.06). Bare ice has an<br />

albedo of 0.5; however, sea ice covered with snow has an albedo of nearly 90% [Source: http://nsidc.org/<br />

seaice/processes/albedo.html.]<br />

90<br />

α=0.9<br />

Feedbacks <strong>in</strong>volv<strong>in</strong>g snow <strong>in</strong>sul<strong>at</strong>ion of <strong>the</strong><br />

ground are also important, through <strong>the</strong>ir effects<br />

on veget<strong>at</strong>ion <strong>and</strong> on permafrost temper<strong>at</strong>ure<br />

<strong>and</strong> its <strong>in</strong>fluence on storage or release of greenhouse<br />

gases, as described <strong>in</strong> <strong>the</strong> next subsections<br />

(e.g., L<strong>in</strong>g <strong>and</strong> Zhang, 2007).<br />

3.2.3 Veget<strong>at</strong>ion Feedback<br />

0.94<br />

A rel<strong>at</strong>ed terrestrial feedback <strong>in</strong>volves chang<strong>in</strong>g<br />

veget<strong>at</strong>ion. A warm<strong>in</strong>g clim<strong>at</strong>e can cause tundra<br />

to give way to shrub veget<strong>at</strong>ion. However,<br />

<strong>the</strong> shrub veget<strong>at</strong>ion has a lower albedo than<br />

tundra, <strong>and</strong> <strong>the</strong> shrubs thus cause fur<strong>the</strong>r warm<strong>in</strong>g<br />

(Figure 3.5) (Chap<strong>in</strong> et al., 2005; Goetz et<br />

al., 2007). Interactions <strong>in</strong>volv<strong>in</strong>g <strong>the</strong> boreal<br />

forest <strong>and</strong> deciduous forest can also be important.<br />

When, as a result of warm<strong>in</strong>g, deciduous<br />

forest replaces evergreen boreal forest, <strong>the</strong>n<br />

w<strong>in</strong>ter surface albedo <strong>in</strong>creases—an example<br />

of a neg<strong>at</strong>ive feedback to <strong>the</strong> warm<strong>in</strong>g clim<strong>at</strong>e<br />

(Bonan et al., 1992; Rivers <strong>and</strong> Lynch, 2004).<br />

Altern<strong>at</strong>ively, if warm<strong>in</strong>g allows evergreen<br />

boreal forest to advance northward replac<strong>in</strong>g<br />

tundra or shrub veget<strong>at</strong>ion, <strong>the</strong>n <strong>the</strong> lower<br />

0.5<br />

0.1<br />

If sea ice is th<strong>in</strong>ned by<br />

warm<strong>in</strong>g, <strong>the</strong>n <strong>the</strong> ocean<br />

he<strong>at</strong>s <strong>the</strong> overly<strong>in</strong>g<br />

<strong>at</strong>mosphere <strong>in</strong> w<strong>in</strong>ter<br />

months, amplify<strong>in</strong>g<br />

th<strong>at</strong> warm<strong>in</strong>g.<br />

37

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!