06.03.2013 Views

Past Climate Variability and Change in the Arctic and at High Latitudes

Past Climate Variability and Change in the Arctic and at High Latitudes

Past Climate Variability and Change in the Arctic and at High Latitudes

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

44<br />

The U.S. <strong>Clim<strong>at</strong>e</strong> Science Program Chapter 3<br />

METERS<br />

Wm –2<br />

δ 18 O(PERCENT)<br />

PERCENT<br />

–20<br />

–40<br />

–60<br />

–80<br />

–100<br />

–120<br />

–140<br />

540<br />

520<br />

500<br />

480<br />

460<br />

440<br />

–34<br />

–36<br />

–38<br />

–40<br />

–42<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

0<br />

0<br />

fossil record <strong>in</strong>dic<strong>at</strong>es th<strong>at</strong> a certa<strong>in</strong> clim<strong>at</strong>e milestone<br />

was reached, such as exceed<strong>in</strong>g a m<strong>in</strong>imum<br />

summer temper<strong>at</strong>ure threshold for successful<br />

growth or a w<strong>in</strong>ter m<strong>in</strong>imum temper<strong>at</strong>ure of<br />

freez<strong>in</strong>g tolerance (Figure 3.8). This methodology<br />

was developed early <strong>in</strong> Sc<strong>and</strong><strong>in</strong>avia (Iversen,<br />

1944); M<strong>at</strong><strong>the</strong>ws et al. (1990) used <strong>in</strong>dic<strong>at</strong>or<br />

species to constra<strong>in</strong> temper<strong>at</strong>ures dur<strong>in</strong>g <strong>the</strong> last<br />

<strong>in</strong>terglaci<strong>at</strong>ion <strong>in</strong> northwest cAnAdA, <strong>and</strong> Ritchie<br />

et al. (1983) used <strong>in</strong>dic<strong>at</strong>or species to highlight<br />

early Holocene warmth <strong>in</strong> northwest cAnAdA.<br />

This technique has also been used extensively<br />

with fossil <strong>in</strong>sect assemblages.<br />

Methodologies for <strong>the</strong> numerical estim<strong>at</strong>ion<br />

of past temper<strong>at</strong>ures from pollen assemblages<br />

0 10 20 30 40 50 60 70 80 90 100<br />

0<br />

1<br />

10 20 30 40 50 60 70 80 90 100<br />

AGE (KYR BP)<br />

3,510±90 13,700±80 26,270±280<br />

Spores<br />

Trees <strong>and</strong> shrubs<br />

H 1 H 2 H 3 H 4 H 5 H 6<br />

2<br />

3 8 12 14<br />

4 56 1617<br />

7 10<br />

11 15<br />

13<br />

18<br />

9<br />

Herbs<br />

200 400 600 800<br />

DEPTH, IN CENTIMETERS<br />

Ice-volume equivalent sea level<br />

19 20<br />

June Insol<strong>at</strong>ion <strong>at</strong> 60°N<br />

21<br />

22<br />

GISP2<br />

23<br />

Elikchan 4 Lake Pollen<br />

Figure 3.8 Upper three panels reflect changes as follows: top, sea level<br />

(Lambeck et al., 2002); middle, June <strong>in</strong>sol<strong>at</strong>ion <strong>at</strong> 60°N (Berger <strong>and</strong> Loutre,<br />

1991); bottom, air temper<strong>at</strong>ure over Greenl<strong>and</strong> Ice Sheet (numbers refer<br />

to <strong>in</strong>terstadials) based on <strong>the</strong> δ 18O record <strong>in</strong> ice (Grootes et al., 1993)<br />

dur<strong>in</strong>g <strong>the</strong> past 100 ka (ages <strong>in</strong> calendar years). Arrows denote tim<strong>in</strong>g of<br />

He<strong>in</strong>rich events. The lowermost panel shows changes <strong>in</strong> <strong>the</strong> percentages<br />

of tree <strong>and</strong> shrub pollen, herb pollen, <strong>and</strong> spores <strong>at</strong> Ilikchan 4 Lake <strong>in</strong> <strong>the</strong><br />

Magadan region of Chukotka, Russia (Lozhk<strong>in</strong> <strong>and</strong> Anderson, 1996). Lake<br />

core x-axis is depth, not time; <strong>the</strong> base of <strong>the</strong> core d<strong>at</strong>es to about 60 ka<br />

BP. Between approxim<strong>at</strong>ely 55 ka <strong>and</strong> 72 ka, treel<strong>in</strong>e recovered for short<br />

<strong>in</strong>tervals to nearly Holocene conditions. These conditions could reflect<br />

warm <strong>in</strong>terstadials th<strong>at</strong> also appear <strong>in</strong> <strong>the</strong> Greenl<strong>and</strong> ice core record about<br />

<strong>the</strong> same time.<br />

follow one of two approaches. The first is <strong>the</strong><br />

<strong>in</strong>verse-model<strong>in</strong>g approach, <strong>in</strong> which fossil d<strong>at</strong>a<br />

from one or more localities are used to provide<br />

temper<strong>at</strong>ure estim<strong>at</strong>es for those localities (this<br />

approach also underlies <strong>the</strong> rel<strong>at</strong>ive estim<strong>at</strong>es<br />

of temper<strong>at</strong>ure described above). A modern<br />

“calibr<strong>at</strong>ion set” of d<strong>at</strong>a (<strong>in</strong> this case, pollen assemblages)<br />

is rel<strong>at</strong>ed by equ<strong>at</strong>ions to observed<br />

modern temper<strong>at</strong>ure, <strong>and</strong> <strong>the</strong> functions thus<br />

obta<strong>in</strong>ed are <strong>the</strong>n applied to fossil d<strong>at</strong>a. This<br />

method has been developed <strong>and</strong> applied <strong>in</strong> Sc<strong>and</strong><strong>in</strong>avia<br />

(e.g., Seppä et al., 2004). A variant of <strong>the</strong><br />

<strong>in</strong>verse approach is analogue analysis, <strong>in</strong> which<br />

a large modern d<strong>at</strong>aset with assigned clim<strong>at</strong>e<br />

d<strong>at</strong>a forms <strong>the</strong> basis for comparison with fossil<br />

spectra. Good m<strong>at</strong>ches are derived st<strong>at</strong>istically,<br />

<strong>and</strong> <strong>the</strong> result<strong>in</strong>g set of analogues provides an<br />

estim<strong>at</strong>e of <strong>the</strong> past mean temper<strong>at</strong>ure <strong>and</strong> accompany<strong>in</strong>g<br />

uncerta<strong>in</strong>ty (Anderson et al., 1989,<br />

1991).<br />

Inverse model<strong>in</strong>g relies upon observed modern<br />

rel<strong>at</strong>ionships. Some plant species were more<br />

abundant <strong>in</strong> <strong>the</strong> past than <strong>the</strong>y are today, <strong>and</strong><br />

<strong>the</strong> fossil pollen spectra <strong>the</strong>y produced may<br />

have no recognizable modern counterpart—socalled<br />

“no-analogue” assemblages. Outside <strong>the</strong><br />

envelope of modern observ<strong>at</strong>ions, fossil pollen<br />

spectra, which are described <strong>in</strong> terms of pollen<br />

abundance, cannot be reliably rel<strong>at</strong>ed to past clim<strong>at</strong>e.<br />

This problem led to <strong>the</strong> adoption of a second<br />

approach to estim<strong>at</strong><strong>in</strong>g past temper<strong>at</strong>ure (or<br />

o<strong>the</strong>r clim<strong>at</strong>e variable) called forward model<strong>in</strong>g.<br />

The pollen d<strong>at</strong>a are not used to develop numerical<br />

values but are used to test a “hypo<strong>the</strong>sis” about<br />

<strong>the</strong> st<strong>at</strong>us of past temper<strong>at</strong>ure (a key <strong>in</strong>gredient<br />

of clim<strong>at</strong>e). The hypo<strong>the</strong>sis may be a conceptual<br />

model of <strong>the</strong> st<strong>at</strong>us of past clim<strong>at</strong>e, but typically it<br />

is represented by a clim<strong>at</strong>e-model simul<strong>at</strong>ion for<br />

a given time <strong>in</strong> <strong>the</strong> past. The clim<strong>at</strong>e simul<strong>at</strong>ion<br />

drives a veget<strong>at</strong>ion model th<strong>at</strong> assigns veget<strong>at</strong>ion<br />

cover on <strong>the</strong> basis of bioclim<strong>at</strong>ic rules (such<br />

as <strong>the</strong> w<strong>in</strong>ter m<strong>in</strong>imums or required warmth<br />

of summer grow<strong>in</strong>g temper<strong>at</strong>ures mentioned<br />

above). The resultant map is compared with a<br />

map of past veget<strong>at</strong>ion developed from <strong>the</strong> fossil<br />

d<strong>at</strong>a. The philosophy of this approach is described<br />

by Prentice <strong>and</strong> Webb (1998). Such d<strong>at</strong>a<br />

<strong>and</strong> models have been compared for <strong>the</strong> <strong>Arctic</strong> by<br />

Kaplan et al. (2003) <strong>and</strong> Wohlfahrt et al. (2004).<br />

The gre<strong>at</strong> advantage of this approach is th<strong>at</strong> underly<strong>in</strong>g<br />

<strong>the</strong> model simul<strong>at</strong>ion are hypo<strong>the</strong>sized<br />

clim<strong>at</strong>ic mechanisms; those mechanisms allow<br />

not only <strong>the</strong> description but also an explan<strong>at</strong>ion<br />

of past clim<strong>at</strong>e changes.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!