06.03.2013 Views

Past Climate Variability and Change in the Arctic and at High Latitudes

Past Climate Variability and Change in the Arctic and at High Latitudes

Past Climate Variability and Change in the Arctic and at High Latitudes

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

5.2.2b biological <strong>in</strong>dic<strong>at</strong>ors <strong>and</strong><br />

rEl<strong>at</strong>Ed fE<strong>at</strong>urEs<br />

Liv<strong>in</strong>g th<strong>in</strong>gs are sensitive to clim<strong>at</strong>e. The<br />

species found <strong>in</strong> a tropical ra<strong>in</strong> forest differ<br />

from those found on <strong>the</strong> tundra. By compar<strong>in</strong>g<br />

modern species from different places th<strong>at</strong> have<br />

different clim<strong>at</strong>es, or by look<strong>in</strong>g <strong>at</strong> changes<br />

<strong>in</strong> species <strong>at</strong> one place for <strong>the</strong> short <strong>in</strong>terval<br />

of <strong>the</strong> <strong>in</strong>strumental record, <strong>the</strong> rel<strong>at</strong>ion with<br />

clim<strong>at</strong>e can be estim<strong>at</strong>ed. Assum<strong>in</strong>g th<strong>at</strong> this<br />

rel<strong>at</strong>ion has not changed with time, longer<br />

records of clim<strong>at</strong>e <strong>the</strong>n can be estim<strong>at</strong>ed from<br />

occurrence of <strong>the</strong> rema<strong>in</strong>s of different species<br />

<strong>in</strong> older sediments (e.g., Schofield et al., 2007).<br />

These clim<strong>at</strong>e records <strong>the</strong>n can be tied, to some<br />

degree, to <strong>the</strong> st<strong>at</strong>e of <strong>the</strong> ice sheet.<br />

Lake sediments are especially valuable as<br />

sources of biotic <strong>in</strong>dic<strong>at</strong>ors, because sediment<strong>at</strong>ion<br />

(<strong>and</strong> thus <strong>the</strong> record) is cont<strong>in</strong>uous <strong>and</strong> <strong>the</strong><br />

ecosystems <strong>in</strong> <strong>and</strong> around lakes tend to be rich<br />

(e.g., Bjorck et al., 2002; Andresen et al., 2004;<br />

Ljung <strong>and</strong> Bjorck, 2004). Pollen (e.g., Ljung <strong>and</strong><br />

Bjorck, 2004; Schofield et al., 2007), microfossils,<br />

<strong>and</strong> macrofossils (such as chironomids,<br />

also called midge flies (Brodersen <strong>and</strong> Bennike,<br />

2003)) are all used to gre<strong>at</strong> advantage <strong>in</strong><br />

reconstruct<strong>in</strong>g past clim<strong>at</strong>es. The isotopic composition<br />

of shells or of <strong>in</strong>organic precipit<strong>at</strong>es <strong>in</strong><br />

lakes records some comb<strong>in</strong><strong>at</strong>ion of temper<strong>at</strong>ure<br />

<strong>and</strong> of <strong>the</strong> isotopic composition of <strong>the</strong> w<strong>at</strong>er.<br />

Physical aspects of lake sediments, <strong>in</strong>clud<strong>in</strong>g<br />

those l<strong>in</strong>ked to biological processes (e.g., loss on<br />

ignition, which primarily measures <strong>the</strong> rel<strong>at</strong>ive<br />

abundance of organic m<strong>at</strong>ter <strong>in</strong> <strong>the</strong> sediment)<br />

are also rel<strong>at</strong>ed to clim<strong>at</strong>e. In places where <strong>the</strong><br />

weight of <strong>the</strong> ice previously depressed <strong>the</strong> l<strong>and</strong><br />

below sea level <strong>and</strong> subsequent rebound raised<br />

<strong>the</strong> l<strong>and</strong> back above sea level <strong>and</strong> formed lakes<br />

(see section 5.2.2C, below), <strong>the</strong> time of onset of<br />

lacustr<strong>in</strong>e conditions <strong>and</strong> <strong>the</strong> modern height of<br />

<strong>the</strong> lake toge<strong>the</strong>r provide key <strong>in</strong>form<strong>at</strong>ion on<br />

ice-sheet history (e.g., Bennike et al., 2002).<br />

Raised mar<strong>in</strong>e deposits <strong>in</strong> GreenlAnd <strong>and</strong> surround<strong>in</strong>gs<br />

provide an additional <strong>and</strong> important<br />

source of biological <strong>in</strong>dic<strong>at</strong>ors of clim<strong>at</strong>e<br />

change. Many mar<strong>in</strong>e deposits now reside above<br />

sea level, because of <strong>the</strong> <strong>in</strong>terplay of chang<strong>in</strong>g<br />

sea level, geological processes of uplift <strong>and</strong><br />

subsidence, <strong>and</strong> isost<strong>at</strong>ic response (ice-sheet<br />

growth depress<strong>in</strong>g <strong>the</strong> l<strong>and</strong> <strong>and</strong> subsequent<br />

ice-sheet shr<strong>in</strong>kage allow<strong>in</strong>g rebound, with a<br />

lagged response; see section 5.2.2C, below).<br />

<strong>Past</strong> <strong>Clim<strong>at</strong>e</strong> <strong>Variability</strong> <strong>and</strong> <strong>Change</strong> <strong>in</strong> <strong>the</strong> <strong>Arctic</strong> <strong>and</strong> <strong>at</strong> <strong>High</strong> L<strong>at</strong>itudes<br />

Biological m<strong>at</strong>erials with<strong>in</strong> those deposits, <strong>and</strong><br />

especially shells, can be d<strong>at</strong>ed by radiocarbon<br />

or uranium-thorium techniques (see section<br />

5.2.2d, below). Those d<strong>at</strong>es <strong>the</strong>n help fill <strong>in</strong><br />

<strong>the</strong> history of rel<strong>at</strong>ive sea level th<strong>at</strong> can be<br />

used to <strong>in</strong>fer ice-sheet load<strong>in</strong>g histories <strong>and</strong> to<br />

reconstruct clim<strong>at</strong>es on <strong>the</strong> basis of <strong>the</strong> species<br />

present (e.g., Dyke et al., 1996).<br />

5.2.2c glacial isost<strong>at</strong>ic adjustmEnt<br />

<strong>and</strong> rEl<strong>at</strong>iVE sEa-lEVEl <strong>in</strong>dic<strong>at</strong>ors<br />

nEar thE icE shEEt<br />

With<strong>in</strong> <strong>the</strong> geological liter<strong>at</strong>ure, sea level is generally<br />

def<strong>in</strong>ed as <strong>the</strong> elev<strong>at</strong>ion of <strong>the</strong> sea surface<br />

rel<strong>at</strong>ive to some adjacent geological fe<strong>at</strong>ure.<br />

(This convention contrasts with <strong>the</strong> concept of<br />

an absolute sea level whose position (<strong>the</strong> sea<br />

surface) is measured rel<strong>at</strong>ive to some absolute<br />

d<strong>at</strong>um, such as <strong>the</strong> center of Earth.) This def<strong>in</strong>ition<br />

of sea level is consistent with geological<br />

markers of past sea-level change (such as ancient<br />

shorel<strong>in</strong>es, shells, <strong>and</strong> driftwood), which<br />

reflect changes <strong>in</strong> <strong>the</strong> absolute height of ei<strong>the</strong>r<br />

<strong>the</strong> sea surface or <strong>the</strong> geological fe<strong>at</strong>ure (i.e., an<br />

ancient shorel<strong>in</strong>e can be exposed because <strong>the</strong><br />

surface of <strong>the</strong> ocean dropped, or l<strong>and</strong> uplifted,<br />

or a net comb<strong>in</strong><strong>at</strong>ion of l<strong>and</strong> <strong>and</strong> ocean height<br />

changes). Dur<strong>in</strong>g <strong>the</strong> time periods considered <strong>in</strong><br />

this report, <strong>the</strong> dom<strong>in</strong>ant processes responsible<br />

for such changes, <strong>at</strong> least on a global scale, have<br />

been <strong>the</strong> mass transfer between ice reservoirs<br />

<strong>and</strong> oceans associ<strong>at</strong>ed with <strong>the</strong> ice-age cycles,<br />

<strong>and</strong> <strong>the</strong> deform<strong>at</strong>ional response of Earth to this<br />

transfer of mass. This deform<strong>at</strong>ional response is<br />

formally termed glacial isost<strong>at</strong>ic adjustment.<br />

The growth <strong>and</strong> shr<strong>in</strong>kage of ice have generally<br />

been sufficiently slow th<strong>at</strong> glacial isost<strong>at</strong>ic<br />

adjustment of <strong>the</strong> solid Earth is characterized<br />

by both immedi<strong>at</strong>e elastic <strong>and</strong> slow viscous<br />

(i.e., flow) effects. As an example, if a large ice<br />

sheet were to form <strong>in</strong>stantly <strong>and</strong> <strong>the</strong>n persist for<br />

more than a few thous<strong>and</strong> years, <strong>the</strong> l<strong>and</strong> would<br />

respond by nearly <strong>in</strong>stantaneous elastic s<strong>in</strong>k<strong>in</strong>g,<br />

followed by slow subsidence toward isost<strong>at</strong>ic<br />

equilibrium as deep, hot rock moved outward<br />

from bene<strong>at</strong>h <strong>the</strong> ice sheet. Roughly speak<strong>in</strong>g,<br />

<strong>the</strong> f<strong>in</strong>al depression would be about 30% of <strong>the</strong><br />

thickness of <strong>the</strong> ice. Thus <strong>the</strong> ancient Lauren-<br />

tide ice Sheet, which covered most of cAnAdA<br />

<strong>and</strong> <strong>the</strong> nor<strong>the</strong>astern United St<strong>at</strong>es <strong>and</strong> whose<br />

peak thickness was 3–4 km, produced a crustal<br />

depression of about 1 km. (For comparison,<br />

The ancient Laurentide<br />

Ice Sheet, which covered<br />

most of Canada <strong>and</strong> <strong>the</strong><br />

nor<strong>the</strong>astern United<br />

St<strong>at</strong>es <strong>and</strong> whose peak<br />

thickness was 3–4 km,<br />

produced a crustal<br />

depression of about<br />

1 km.<br />

121

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!