06.03.2013 Views

Past Climate Variability and Change in the Arctic and at High Latitudes

Past Climate Variability and Change in the Arctic and at High Latitudes

Past Climate Variability and Change in the Arctic and at High Latitudes

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

64<br />

The U.S. <strong>Clim<strong>at</strong>e</strong> Science Program Chapter 3<br />

high-l<strong>at</strong>itude warmth thus is likely to have orig<strong>in</strong><strong>at</strong>ed<br />

primarily from changes <strong>in</strong> greenhousegas<br />

concentr<strong>at</strong>ions <strong>in</strong> <strong>the</strong> <strong>at</strong>mosphere, or from<br />

changes <strong>in</strong> oceanic or <strong>at</strong>mospheric circul<strong>at</strong>ion,<br />

or from some comb<strong>in</strong><strong>at</strong>ion, perhaps with a slight<br />

possibility th<strong>at</strong> o<strong>the</strong>r processes also contributed.<br />

3.4.2 The Early Qu<strong>at</strong>ernary: Ice-Age<br />

Warm Times<br />

A major reorganiz<strong>at</strong>ion of <strong>the</strong> clim<strong>at</strong>e system<br />

occurred between 3.0 <strong>and</strong> 2.5 Ma. As a result,<br />

<strong>the</strong> first cont<strong>in</strong>ental ice sheets developed <strong>in</strong><br />

<strong>the</strong> North American <strong>and</strong> eurASiAn <strong>Arctic</strong> <strong>and</strong><br />

marked <strong>the</strong> onset of <strong>the</strong> Qu<strong>at</strong>ernary Ice Ages<br />

(Raymo, 1994). For <strong>the</strong> first 1.5–2.0 Ma, ice age<br />

cycles appeared <strong>at</strong> a 41-k.y. <strong>in</strong>terval, <strong>and</strong> <strong>the</strong> clim<strong>at</strong>e<br />

oscill<strong>at</strong>ed between glacial <strong>and</strong> <strong>in</strong>terglacial<br />

st<strong>at</strong>es (Figure 3.25). A prom<strong>in</strong>ent but apparently<br />

short-lived <strong>in</strong>terglacial (warm <strong>in</strong>terval) about<br />

2.4 Ma is recorded especially well <strong>in</strong> <strong>the</strong> kAp<br />

københAvn Form<strong>at</strong>ion, a 100-m-thick sequence<br />

of estuar<strong>in</strong>e sediments th<strong>at</strong> covered an extensive<br />

lowl<strong>and</strong> area near <strong>the</strong> nor<strong>the</strong>rn tip of GreenlAnd<br />

(Funder et al., 2001).<br />

The rich <strong>and</strong> well-preserved fossil fauna <strong>and</strong><br />

flora <strong>in</strong> <strong>the</strong> kAp københAvn Form<strong>at</strong>ion (Figure<br />

3.26) record warm<strong>in</strong>g from cold conditions<br />

<strong>in</strong>to an <strong>in</strong>terglacial <strong>and</strong> <strong>the</strong>n subsequent cool<strong>in</strong>g<br />

BENTHIC δ 18 O (ä)<br />

3.0<br />

3.5<br />

4.0<br />

4.5<br />

5.0<br />

Large N l<strong>and</strong> ice;<br />

100 ka vari<strong>at</strong>ions<br />

Intermedi<strong>at</strong>e N l<strong>and</strong> ice;<br />

41 ka vari<strong>at</strong>ions<br />

dur<strong>in</strong>g 10,000–20,000 years. Dur<strong>in</strong>g <strong>the</strong> peak<br />

warmth, forest trees reached <strong>the</strong> <strong>Arctic</strong> oceAn<br />

coast, 1,000 kilometers (km) north of <strong>the</strong> nor<strong>the</strong>rnmost<br />

trees today. Based on this warmth,<br />

Funder et al. (2001) suggested th<strong>at</strong> <strong>the</strong> GreenlAnd<br />

ice Sheet must have been reduced to local<br />

ice caps <strong>in</strong> mounta<strong>in</strong> areas (Figure 3.26A) (see<br />

Chapter 5, History of <strong>the</strong> Greenl<strong>and</strong> Ice Sheet).<br />

Although f<strong>in</strong>ely resolved time records are not<br />

available throughout <strong>the</strong> <strong>Arctic</strong> oceAn <strong>at</strong> th<strong>at</strong><br />

time, by analogy with present faunas along <strong>the</strong><br />

Russian coast, <strong>the</strong> coastal zone would have been<br />

ice-free for 2 to 3 months <strong>in</strong> summer. Today<br />

this coast of GreenlAnd experiences year-round<br />

sea ice, <strong>and</strong> models of dim<strong>in</strong>ish<strong>in</strong>g sea ice <strong>in</strong> a<br />

warm<strong>in</strong>g world generally <strong>in</strong>dic<strong>at</strong>e long-term<br />

persistence of summertime sea ice off <strong>the</strong>se<br />

shores (e.g., Holl<strong>and</strong> et al., 2006). Thus, <strong>the</strong><br />

reduced sea ice off nor<strong>the</strong>rn GreenlAnd dur<strong>in</strong>g<br />

deposition of <strong>the</strong> kAp københAvn Form<strong>at</strong>ion suggests<br />

a widespread warm time <strong>in</strong> which <strong>Arctic</strong><br />

sea ice was much dim<strong>in</strong>ished.<br />

Dur<strong>in</strong>g kAp københAvn times, precipit<strong>at</strong>ion was<br />

higher <strong>and</strong> temper<strong>at</strong>ures were warmer than <strong>at</strong><br />

<strong>the</strong> peak of <strong>the</strong> current <strong>in</strong>terglacial about 7 ka,<br />

<strong>and</strong> <strong>the</strong> temper<strong>at</strong>ure difference was larger dur<strong>in</strong>g<br />

w<strong>in</strong>ter than dur<strong>in</strong>g summer. <strong>High</strong>er temper<strong>at</strong>ures<br />

dur<strong>in</strong>g deposition of <strong>the</strong> kAp københAvn<br />

were not caused by notably gre<strong>at</strong>er solar<br />

<strong>in</strong>sol<strong>at</strong>ion, ow<strong>in</strong>g to <strong>the</strong> rel<strong>at</strong>ive repe<strong>at</strong>ability<br />

Restricted N l<strong>and</strong> ice<br />

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0<br />

TODAY<br />

TIME (MA)<br />

WARM<br />

COLD<br />

Figure 3.25. The average isotope composition (δ 18O) of bottom-dwell<strong>in</strong>g foram<strong>in</strong>ifers <strong>in</strong> a globally<br />

distributed set of 57 sediment cores th<strong>at</strong> record <strong>the</strong> last 5.3 m.y. (modified from Lisiecki <strong>and</strong> Raymo,<br />

2005). The δ 18O is controlled primarily by global ice volume <strong>and</strong> deep-ocean temper<strong>at</strong>ure, with less ice<br />

or warmer temper<strong>at</strong>ures (or both) upward <strong>in</strong> <strong>the</strong> core. The <strong>in</strong>fluence of Milankovitch frequencies of<br />

Earth’s orbital vari<strong>at</strong>ion are present throughout, but glaci<strong>at</strong>ion <strong>in</strong>creased about 2.7 Ma concurrently with<br />

establishment of a strong 41-k.y. variability l<strong>in</strong>ked to Earth’s obliquity (changes <strong>in</strong> tilt of Earth’s sp<strong>in</strong> axis),<br />

<strong>and</strong> <strong>the</strong> additional <strong>in</strong>crease <strong>in</strong> glaci<strong>at</strong>ion about 1.2–0.7 Ma parallels a shift to stronger 100-k.y. variability.<br />

Dashed l<strong>in</strong>es are used because <strong>the</strong> changes seem to have been gradual. The general trend toward higher<br />

δ 18O th<strong>at</strong> runs through this series reflects <strong>the</strong> long-term drift toward a colder Earth th<strong>at</strong> began <strong>in</strong> <strong>the</strong><br />

early Cenozoic (see Figure 2.8). http://lorra<strong>in</strong>e-lisiecki.com/stack.html.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!