06.03.2013 Views

Past Climate Variability and Change in the Arctic and at High Latitudes

Past Climate Variability and Change in the Arctic and at High Latitudes

Past Climate Variability and Change in the Arctic and at High Latitudes

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

40<br />

The U.S. <strong>Clim<strong>at</strong>e</strong> Science Program Chapter 3<br />

Beaufort Gyre<br />

0.04<br />

3.2.5 Freshw<strong>at</strong>er Balance Feedback<br />

<strong>and</strong> Thermohal<strong>in</strong>e Circul<strong>at</strong>ion<br />

The <strong>Arctic</strong> oceAn is almost completely surrounded<br />

by cont<strong>in</strong>ents (Figure 3.7). Because<br />

precipit<strong>at</strong>ion is low over <strong>the</strong> ice-covered ocean<br />

(Serreze et al., 2006), <strong>the</strong> freshw<strong>at</strong>er <strong>in</strong>put<br />

to <strong>the</strong> <strong>Arctic</strong> oceAn largely derives from <strong>the</strong><br />

runoff from large rivers <strong>in</strong> Eurasia <strong>and</strong> North<br />

America <strong>and</strong> by <strong>the</strong> <strong>in</strong>flow of rel<strong>at</strong>ively lowsal<strong>in</strong>ity<br />

Pacific w<strong>at</strong>er through <strong>the</strong> ber<strong>in</strong>G StrAit.<br />

The YeniSeY, ob, <strong>and</strong> lenA are among <strong>the</strong> n<strong>in</strong>e<br />

largest rivers on Earth, <strong>and</strong> <strong>the</strong>re are several<br />

o<strong>the</strong>r large rivers, such as <strong>the</strong> MAckenzie, th<strong>at</strong><br />

feed <strong>in</strong>to <strong>the</strong> <strong>Arctic</strong> oceAn (see Vörösmarty et<br />

al., 2008). The freshw<strong>at</strong>er discharged by <strong>the</strong>se<br />

rivers dilutes <strong>the</strong> salt<strong>in</strong>ess of ocean surface<br />

w<strong>at</strong>ers, ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g low sal<strong>in</strong>ities on <strong>the</strong> broad,<br />

shallow, <strong>and</strong> seasonally ice-free seas border<strong>in</strong>g<br />

<strong>the</strong> <strong>Arctic</strong> oceAn. The largest of <strong>the</strong>se border<br />

AMAP<br />

<strong>Arctic</strong> Monitor<strong>in</strong>g <strong>and</strong><br />

Assessment Programme<br />

<strong>Arctic</strong> Monitor<strong>in</strong>g <strong>and</strong> Assessment Programme<br />

AMAP Assessment Report: <strong>Arctic</strong> Pollution Issues, Figure 3·27<br />

1.7<br />

Pacific w<strong>at</strong>er<br />

0.8<br />

2.0<br />

3.0<br />

0.16 1.2<br />

4.9 3.1<br />

Atlantic w<strong>at</strong>er<br />

8.0<br />

Atlantic w<strong>at</strong>er +<br />

Intermedi<strong>at</strong>e layer, 200–1,700 m<br />

Pacific w<strong>at</strong>er, 50–200 m<br />

Transpolar Drift<br />

1.9<br />

0.05<br />

Precipit<strong>at</strong>ion<br />

Values are estim<strong>at</strong>ed <strong>in</strong>flows or outflows <strong>in</strong> sverdrups (million m 3 per second).<br />

Surface w<strong>at</strong>er circul<strong>at</strong>ion<br />

River <strong>in</strong>flow<br />

Figure 3.7. Inflows <strong>and</strong> outflows of w<strong>at</strong>er <strong>in</strong> <strong>the</strong> <strong>Arctic</strong> Ocean. Red<br />

l<strong>in</strong>es = components <strong>and</strong> p<strong>at</strong>hs of <strong>the</strong> surface <strong>and</strong> Atlantic W<strong>at</strong>er layer<br />

<strong>in</strong> <strong>the</strong> <strong>Arctic</strong>; black arrows = p<strong>at</strong>hways of Pacific w<strong>at</strong>er <strong>in</strong>flow from<br />

50–200 m depth; blue arrows = surface-w<strong>at</strong>er circul<strong>at</strong>ion; green<br />

arrows = major river <strong>in</strong>flow; red arrows = movements of densitydriven<br />

Atlantic w<strong>at</strong>er <strong>and</strong> <strong>in</strong>termedi<strong>at</strong>e w<strong>at</strong>er masses <strong>in</strong>to <strong>the</strong> <strong>Arctic</strong><br />

(AMAP, 1998, Figure 3.27). [Reproduced by permission of <strong>Arctic</strong><br />

Monitor<strong>in</strong>g <strong>and</strong> Assessment Program.]<br />

<strong>the</strong> Eurasian cont<strong>in</strong>ent, where <strong>the</strong>y serve as<br />

<strong>the</strong> dom<strong>in</strong>ant area <strong>in</strong> <strong>the</strong> <strong>Arctic</strong> oceAn <strong>in</strong> which<br />

sea ice is produced (for some fundamentals on<br />

<strong>Arctic</strong> sea ice, see Barry et al., 1993). Sea ice<br />

forms along <strong>the</strong> Eurasian marg<strong>in</strong> <strong>and</strong> <strong>the</strong>n drifts<br />

toward FrAM StrAit; its transit time is 2–3 years<br />

<strong>in</strong> <strong>the</strong> current regime. In <strong>the</strong> AMerASiAn part<br />

of <strong>the</strong> <strong>Arctic</strong> oceAn, <strong>the</strong> clockwise-rot<strong>at</strong><strong>in</strong>g<br />

Beaufort Gyre is <strong>the</strong> dom<strong>in</strong>ant ice-drift fe<strong>at</strong>ure<br />

(see Figure 6.1).<br />

Surface currents transport low-sal<strong>in</strong>ity surface<br />

w<strong>at</strong>er (its upper 50 m) <strong>and</strong> sea ice (freshw<strong>at</strong>er)<br />

out of <strong>the</strong> <strong>Arctic</strong> oceAn (e.g., Schlosser et al.,<br />

2000). Surface w<strong>at</strong>ers are primarily exported<br />

from <strong>the</strong> <strong>Arctic</strong> oceAn to <strong>the</strong> nor<strong>the</strong>rn north<br />

AtlAntic (nordic SeAS) through western FrAM<br />

StrAit, after which <strong>the</strong>y follow <strong>the</strong> east coast<br />

of GreenlAnd <strong>and</strong> exit <strong>the</strong> nordic SeAS <strong>in</strong>to<br />

<strong>the</strong> north AtlAntic through denMArk StrAit.<br />

A smaller volume of surface w<strong>at</strong>er flows out<br />

through <strong>the</strong> <strong>in</strong>ter-isl<strong>and</strong> channels of <strong>the</strong> cAnAdiAn<br />

<strong>Arctic</strong> ArchipelAGo, <strong>and</strong> it eventually reaches<br />

<strong>the</strong> north AtlAntic through <strong>the</strong> lAbrAdor SeA.<br />

The low-sal<strong>in</strong>e outflow from <strong>the</strong> <strong>Arctic</strong> oceAn<br />

is compens<strong>at</strong>ed by a rel<strong>at</strong>ively warm <strong>in</strong>flow<br />

of sal<strong>in</strong>e Atlantic w<strong>at</strong>er through eastern FrAM<br />

StrAit. Despite its warmth, Atlantic w<strong>at</strong>er has<br />

sufficiently high salt content th<strong>at</strong> its density<br />

is higher than <strong>the</strong> low-sal<strong>in</strong>ity surface w<strong>at</strong>ers.<br />

The <strong>in</strong>flow<strong>in</strong>g rel<strong>at</strong>ively dense Atlantic w<strong>at</strong>er<br />

is forced to s<strong>in</strong>k bene<strong>at</strong>h <strong>the</strong> colder, but fresher,<br />

surface w<strong>at</strong>er upon enter<strong>in</strong>g <strong>the</strong> <strong>Arctic</strong> oceAn.<br />

North of SvAlbArd, Atlantic w<strong>at</strong>er spreads as a<br />

boundary current <strong>in</strong>to <strong>the</strong> <strong>Arctic</strong> Bas<strong>in</strong> <strong>and</strong><br />

forms <strong>the</strong> Atlantic W<strong>at</strong>er layer (Morison et al.,<br />

2000). The strong vertical gradients of sal<strong>in</strong>ity<br />

<strong>and</strong> temper<strong>at</strong>ure <strong>in</strong> <strong>the</strong> <strong>Arctic</strong> oceAn produce a<br />

rel<strong>at</strong>ively stable str<strong>at</strong>ific<strong>at</strong>ion. However, recent<br />

observ<strong>at</strong>ions have shown th<strong>at</strong> <strong>in</strong> some areas <strong>in</strong><br />

<strong>the</strong> Eurasian part of <strong>the</strong> <strong>Arctic</strong> oceAn, <strong>the</strong> warm<br />

Atlantic layer mixes with <strong>the</strong> surface mixed<br />

layer (Rudels et al., 1996; Steele <strong>and</strong> Boyd,<br />

1998; Schauer et al., 2002), <strong>the</strong>reby limit<strong>in</strong>g<br />

sea ice form<strong>at</strong>ion <strong>and</strong> promot<strong>in</strong>g vertical he<strong>at</strong><br />

transfer to <strong>the</strong> <strong>Arctic</strong> <strong>at</strong>mosphere <strong>in</strong> w<strong>in</strong>ter. In<br />

recent decades circum-<strong>Arctic</strong> glaciers <strong>and</strong> ice<br />

sheets have been los<strong>in</strong>g mass (more snow <strong>and</strong><br />

ice melt<strong>in</strong>g <strong>in</strong> summer than accumul<strong>at</strong>es as snow<br />

<strong>in</strong> w<strong>in</strong>ter) (Dowdeswell et al., 1997; Rignot <strong>and</strong><br />

Thomas, 2002; Meier et al., 2007), <strong>and</strong> s<strong>in</strong>ce<br />

<strong>the</strong> 1930s river runoff to <strong>the</strong> <strong>Arctic</strong> oceAn has<br />

been <strong>in</strong>creas<strong>in</strong>g (Peterson et al., 2002). Recent<br />

studies suggest th<strong>at</strong> changes <strong>in</strong> river runoff<br />

strongly <strong>in</strong>fluence <strong>the</strong> stability of <strong>Arctic</strong> oceAn

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!