03.06.2013 Views

N=2 Supersymmetric Gauge Theories with Nonpolynomial Interactions

N=2 Supersymmetric Gauge Theories with Nonpolynomial Interactions

N=2 Supersymmetric Gauge Theories with Nonpolynomial Interactions

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

3.4. Chern-Simons Couplings 51<br />

Here the covariant derivative actually reduces to the partial derivative since the terms<br />

in square brackets are gauge invariant, and a similar remark as above applies to the<br />

dots. With the result from section 3.2, the second Bianchi identity (BI.2) takes the<br />

form<br />

where ˆ Σµν is given by<br />

<br />

Dν IG ˜µν µν<br />

+ RG + Σ ˆ µν = − ˜ F µν Wν , (3.75)<br />

ˆΣµν = Σµν − i 2(FI − ¯ FI)F I µν − 2i (FI + ¯ FI) ˜ F I µν<br />

+ FIJ χiI σµν χJ i − ¯ FIJ ¯χI<br />

i ¯σµν ¯χiJ .<br />

(3.76)<br />

Since ( ˆ Σµν − Σµν) is δz-invariant, we can replace Σµν <strong>with</strong> the extended expression in<br />

eq. (3.28) and thus in the solution (3.31). Hence, the second Bianchi identity does not<br />

restrict the φ-dependence of the function F. It is the first Bianchi identity for W µ ,<br />

however, that imposes a constraint on F. It now reads<br />

µ µ<br />

Dµ IW − Λ = 1<br />

4 FµνG µν + i<br />

ij<br />

IDiDjM 2 −<br />

12 1<br />

12 (2Yij + ¯ λi ¯ Dj)M ij<br />

2 + c.c. ,<br />

where the last term originates from DiDjM ij<br />

1 . So let us apply a generator D α i to eq.<br />

(3.73); the contribution from M ij<br />

2 is<br />

DiDjM ij<br />

2 = 12 <br />

FIJD<br />

I<br />

µ φ I Dµ ¯ φ J − 1<br />

2FIJ(Fµν − i ˜ Fµν) I F µνJ − iFIJ χiIσ µ Dµ ¯χJ<br />

i<br />

+ 1<br />

2FIJD I ijD ijJ + 1<br />

2FIJ χiIχK i ¯ φ L fKL J − 1FIJ<br />

¯χI<br />

2 i ¯χiKφ L fKL J<br />

− 1<br />

4 FIJ(φ K ¯ φ J fKL I )(φ M ¯ φ N fMN L ) + ∂µ<br />

+ 1<br />

2 FIJKD ijIχ J i χK j + 1<br />

+ 1<br />

12 FIJKL χiIχ jJ χ K i χL j<br />

( ¯ FI − FI)D µ ¯ φ I <br />

2FIJK F I µν χJ i σ<br />

µνχiK i<br />

+<br />

I (Yij + λiDj)M ij<br />

2 .<br />

(3.77)<br />

Clearly, the imaginary part 2 of the expression inside the square brackets can combine<br />

into a total derivative only if FIJ is constant and real. For a compact gauge group this<br />

fixes F modulo a normalization,<br />

F(φ) = e<br />

2 δIJφ I φ J , (3.78)<br />

e being a coupling constant of mass dimension −1. Then the first Bianchi identity<br />

reduces to<br />

µ<br />

Dµ IW − Λ ˆ µ = 1<br />

2FµνG µν , (3.79)<br />

where<br />

ˆΛ µ = Λ µ − e 2ε µνρσ (A I ν∂ρA I σ − 1<br />

3AIνA J ρ A K σ fJK I )<br />

+ i(φ − ¯ φ) I D µ (φ + ¯ φ) I − χiI σ µ ¯χ I (3.80)<br />

i<br />

2 The real part is exactly the super Yang-Mills Lagrangian (1.45) for an arbitrary prepotential F.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!