03.06.2013 Views

N=2 Supersymmetric Gauge Theories with Nonpolynomial Interactions

N=2 Supersymmetric Gauge Theories with Nonpolynomial Interactions

N=2 Supersymmetric Gauge Theories with Nonpolynomial Interactions

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

66 Chapter 4. The Nonlinear Case<br />

where for consistency the fermions contained in the composite fields W µ and Gµν have<br />

to be set to zero. The latter depends on the former according to eq. (4.21), so we first<br />

replace Gµν,<br />

− 1<br />

4 GµνGµν + 4AµWν + 2εµνρσ ∂ ρ (LA σ ) =<br />

= − 1<br />

4 V µν Vµν − ˜ V µν ∂µ(LAν) − LWµ ˜ F µν Aν + A µ W ν A[µWν] .<br />

Then the terms linear in W µ cancel, while the bilinear ones combine into W µ KµνW ν<br />

just as for the linear vector-tensor multiplet,<br />

<br />

1<br />

LnlinVT ϱL<br />

2 |Z|2∂ µ L ∂µL + EU 2 − 1<br />

2 W µ KµνW ν − 1<br />

4 V µν Vµν − 1<br />

4 L ˜ F µν Vµν<br />

+ 1<br />

12 L2F µν Fµν − 1<br />

6 L2 (Z ¯ Z + ¯ ZZ) − 1<br />

12 L2 Y ij <br />

Yij<br />

+ ϱ<br />

6 ∂µ<br />

3 µν<br />

2L F Aν − 3L 2 <br />

V ˜ µν<br />

Aν .<br />

(4.47)<br />

Again the nonpolynomial interactions arise from inverting Kµν. Using eqs. (3.38) and<br />

(4.29), the substitution of W µ gives<br />

− ϱ<br />

2 L W µ KµνW ν = − ϱ<br />

2L (LKµρWρ) (K −1 )µν (LK νσ Wσ)<br />

= − ϱ µ 1 H − 2 2LE<br />

˜ V µν Vν + 1<br />

2L2F ˜µν Aν + (LV µν + Π µν )Aν<br />

ϱ<br />

+<br />

2LE|Z| 2<br />

<br />

AµH µ − 1<br />

2Aµ ˜ V µν 2 Vν .<br />

2<br />

(4.48)<br />

At last, let us neglect also fluctuations of the scalars around their background values<br />

〈Z〉 = i and 〈L〉 = 1/ϱ. Then only the gauge potentials Vµ, Bµν and Aµ remain, and<br />

after rescaling<br />

Aµ → gzAµ , Bµν → Bµν/ϱ ,<br />

such that both fields have canonical dimension 1, we find 2 (dropping a total derivative)<br />

L = − 1<br />

4 V µν Vµν − 1 2<br />

1 − g<br />

4<br />

z/3ϱ 2 F µν Fµν<br />

− 1 µ 1 H − 2 2E<br />

ϱ ˜ V µν Vν + gzV µν Aν + 1<br />

2ϱ−1g 2 z ˜ F µν Aν<br />

<br />

AµH µ − 1<br />

2ϱAµ ˜ V µν 2 Vν .<br />

+ g2 z<br />

2E<br />

2<br />

(4.49)<br />

Apart from the normalisation of Aµ, this Lagrangian follows from the one in eq. (3.64),<br />

when in the latter we make the substitution<br />

H µ → H µ − 1<br />

2 ϱ ˜ V µν Vν + 1<br />

2 ϱ−1 g 2 z ˜ F µν Aν , (4.50)<br />

2 Evidently, positivity of the kinetic energies requires 3ϱ 2 > g 2 z.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!