03.06.2013 Views

N=2 Supersymmetric Gauge Theories with Nonpolynomial Interactions

N=2 Supersymmetric Gauge Theories with Nonpolynomial Interactions

N=2 Supersymmetric Gauge Theories with Nonpolynomial Interactions

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

4.2. Transformations and Bianchi Identities 61<br />

where the real composite fields<br />

W µ ≡ |Z| 2 (LW µ − ψ i σ µ ¯ ψi) + i<br />

2 L2 (Z∂ µ ¯ Z − ¯ Z∂ µ Z + iλ i σ µ¯ λi)<br />

+ iL (Zψ i σ µ¯ λi − ¯ Zλ i σ µ ¯ ψi)<br />

(4.24)<br />

Π µν ≡ i(Zψ i σ µν ψi − ¯ Z ¯ ψ i ¯σ µν ¯ ψi) (4.25)<br />

are both bilinear in the components of the vector-tensor multiplet. In view of eq. (2.56)<br />

one might search for a superfield redefintion which simplifies W µ . In the limit Z = i<br />

we would have<br />

LW µ − ψ i σ µ ¯ ψi = LL ′ ˆ W µ − (L ′2 + 1<br />

2 LL′′ ) ˆ ψ i σ µ ˆ¯ ψi ,<br />

so the spinors could be removed indeed (<strong>with</strong> L ∼ ˆ L 1/3 ). However, this would merely<br />

shift complications from one place to another, as both W µ and W µ occur in the Bianchi<br />

identities and their solutions. Hence, we stick to our original choice (4.13) for the<br />

constraints.<br />

It is quite an effort to derive the first Bianchi identity from eq. (BI.1). Applying ¯ D ˙α i to<br />

eq. (4.16) gives<br />

i<br />

6 Z ¯ Di ¯ DjM ij = iLZ − 2(W µ − iD µ L) ∂µZ − Zλiδzψ i + 2i ∂µλ i σ µ ψi<br />

¯<br />

− 1 <br />

i<br />

2 L<br />

Z(Wµ − iDµL) 2 + i<br />

4 ¯ ZG µν (Gµν + i ˜ Gµν) + i<br />

2Z|Z|2 U 2<br />

+ λ i σ µ ψi<br />

¯ (Wµ − iDµL) + iFµν ¯ ψ i ¯σ µν ψi<br />

¯ − Z Dµ(ψ i σ a ψi) ¯ (4.26)<br />

− 2 ψ i σ µ ¯ ψi ∂µZ + ZUψ i λi − iY ij ¯ ψi ¯ ψj − i<br />

4 ¯ Z ¯ Mij ¯ M ij<br />

+ 1<br />

3 Z (ψiDj ¯ M ij − ¯ ψi ¯ DjM ij ) .<br />

This we insert into eq. (BI.1) and multiply the equation <strong>with</strong> |Z| 2 L, upon which the<br />

covariant divergence of W µ emerges,<br />

DµW µ = − 1<br />

4 (IGµν − R ˜ Gµν)(I ˜ G µν + RG µν ) − 1<br />

+ 1<br />

2FµνΠ µν − i<br />

<br />

1<br />

2 4Z(ZMij − 4i λiψj)M ij + (ZYij − λiλj)ψ i ψ j<br />

− λiψj λ i ψ j − c.c. .<br />

2 Gµν(Z λiσ µν ψ i + ¯ Z ¯ ψi¯σ µν ¯ λ i )<br />

By virtue of eqs. (A.35) and (A.25) the four-fermion terms that remain when M ij is<br />

inserted can be written as the product of an antisymmetric tensor <strong>with</strong> its dual,<br />

1<br />

4Z(ZMij − 4i λiψj)M ij + (ZYij − λiλj)ψ i ψ j − λiψj λ i ψ j − c.c. =<br />

= − 1<br />

2 (λiλj ψ i ψ j + λiψj λ j ψ i ) − c.c.<br />

= − i<br />

4 εµνρσ (λiσµνψ i − ¯ ψi¯σµν ¯ λ i ) (λjσρσψ j − ¯ ψj ¯σρσ ¯ λ j )<br />

= i<br />

2 (Σµν − LFµν) ( ˜ Σ µν − L ˜ F µν ) ,<br />

which together <strong>with</strong> the relation<br />

− 1<br />

2 Gµν(Z λiσ µν ψ i + ¯ Z ¯ ψi¯σ µν ¯ λ i ) = − 1<br />

2 (IGµν − R ˜ Gµν) (Σ µν − LF µν )

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!